Airflow速用
Airflow是Apache用python编写的,用到了 flask框架及相关插件,rabbitmq,celery等(windows不兼容);、
主要实现的功能
- 编写 定时任务,及任务间的编排;
- 提供了web界面 可以手动触发任务,分析任务执行顺序,任务执行状态,任务代码,任务日志等等;
- 实现celery的分布式任务调度系统;
- 简单方便的实现了 任务在各种状态下触发 发送邮件的功能;https://airflow.apache.org/concepts.html#email-configuration
- 对组合任务 可以根据 不同参数进入不同分支进行处理 http://airflow.apache.org/concepts.html#branching
- 执行 bash脚本命令;
- 对组合任务 设置触发条件(如:全部失败/成功时执行某任务 等等)http://airflow.apache.org/concepts.html#trigger-rules
- 简单实现随机 负载均衡和容错能力 http://airflow.apache.org/concepts.html#connections
- 对组合任务 间进行数据传递 http://airflow.apache.org/concepts.html#xcoms
- 对分布式任务指定 queue, worker可以指定消费的queue(celery的使用) http://airflow.apache.org/concepts.html#queues
- 存储日志到远程 http://airflow.apache.org/howto/write-logs.html
- 调用 远程 谷歌云,亚马逊云 相关服务(如语音识别等等)https://airflow.apache.org/integration.html#integration
- 调用 钉钉 相关服务
实现功能总结
不仅celery有的功能我都有, 我还能通过页面手动触发/暂停任务,管理任务特方便;我他妈还能 调用谷歌云等服务,日志也能方便打印到云服务上。。。。。。;我就是牛!
核心思想
- DAG:英文为:Directed Acyclic Graph;指 (有向无环图)有向非循环图,是想运行的一系列任务的集合,不关心任务是做什么的,只关心 任务间的组成方式,确保在正确的时间,正确的顺序触发各个任务,准确的处理意外情况;http://airflow.apache.org/concepts.html#dags
- DAGs:多个任务集(多个DAG)
- Operator: 指 某些类型任务的模板 类;如 PythonOperator(执行python相关操作),EmailOperator(执行发送邮件相关操作),SimpleHttpOperator(执行发送http请求相关操作) 等几十种(源码可见)http://airflow.apache.org/howto/operator/index.html#
- Task:当通过 Operator定义了执行任务内容后,在实例化后,便是 Task,为DAG中任务集合的具体任务
- Executor:数据库记录任务状态(排队queued,预执行scheduled,运行中running,成功success,失败failed),调度器(Scheduler )从数据库取数据并决定哪些需要完成,然后 Executor 和调度器一起合作,给任务需要的资源让其完成。Executor间(如 LocalExecutor,CeleryExecutor)不同点在于他们拥有不同的资源以及如何利用资源分配工作,如LocalExecutor只在本地并行执行任务,CeleryExecutor分布式多机器执行任务。 https://www.astronomer.io/guides/airflow-executors-explained/
- Hook:是airflow与外部平台/数据库交互的方式,如 http/ssh/sftp等等,是Operator的基础部分(如SimpleHttpOperator 需要依赖HttpHook)
任务间定义排序的方法
官方推荐使用 移位操作符 方法,因为较为直观,容易理解
如: op1 >> op2 >> op3 表示任务执行顺序为 从左到右依次执行
官方文档介绍:http://airflow.apache.org/concepts.html#bitshift-composition
提高airflow相关执行速度方法
通过修改airflow.cfg相关配置
官方文档如下:http://airflow.apache.org/faq.html
安装及启动相关服务
- 创建python虚拟环境 venv
- 添加airflow.cfg(此配置注解在下面)的配置文件夹路径:先 vi venv/bin/active; 里面输入 export AIRFLOW_HOME="/mnt/e/project/airflow_config/local"
命令行:pip install apache-airflow
根据airflow.cfg的数据库配置,在连接的数据库服务创建一个 名为 airflow_db的数据库
命令行初始化数据库:airflow initdb
命令行启动web服务: airflow webserver -p 8080
命令行启动任务调度服务:airflow scheduler
- 命令行启动worker:airflow worker -q queue_name
使用 http_operator发送http请求并在失败时,发送邮件
1.设置邮件html模板(如下为自定义模板)
<h2 style="color: red">Xxx service task exception,please fix them!!!</h2>
Try {{try_number}} out of {{max_tries + 1}}<br><br>
<b>dag id: </b>{{ti.dag_id}}<br><br>
<b>task id: </b>{{ti.task_id}}<br><br>
<b>task state: </b>{{ti.state}}<br><br> <b>Exception:</b>
<p style="color: #0d7bdc">{{exception_html}}</p>
<b>Log Url: </b>
<a href="{{ti.log_url}}" style="color: red">Link</a><br><br>
<b>Host: </b>
{{ti.hostname}}<br><br>
<b>Log file path: </b> {{ti.log_filepath}}<br><br>
<b>Mark success: </b> <a href="{{ti.mark_success_url}}">Link</a><br>
模板效果图:
2. airflow.cfg文件中配置 发送邮件服务
3.编写代码:
# -*- coding: utf-8 -*-
"""
(C) xxx <xxx@xxx.com>
All rights reserved
create time '2019/10/21 09:27'
"""
import os
from datetime import datetime import pytz
from airflow import DAG
from airflow.models import Variable
from airflow.operators.http_operator import SimpleHttpOperator # 设置第一次触发任务时间 及 设置任务执行的时区
tz = pytz.timezone("Asia/Shanghai")
dt = datetime(2019, 10, 11, 0, 0, tzinfo=tz)
utc_dt = dt.astimezone(pytz.utc).replace(tzinfo=None) # 从环境变量找到 当前环境
env = os.environ.get("PROJECT_ENV", "LOCAL")
# 添加 需要的相关环境变量,可在 web网页中设置;注意 变量名 以AIRFLOW_CONN_开头,并且大写
os.environ["AIRFLOW_CONN_OLY_HOST"] = Variable.get("OLY_HOST_%s" % env) # dag默认参数
args = {
"owner": "Rgc", # 任务拥有人
"depends_on_past": False, # 是否依赖过去执行此任务的结果,如果为True,则过去任务必须成功,才能执行此次任务
"start_date": utc_dt, # 任务开始执行时间
"email": ["rgc@bvrft.com"], # 邮件地址,可以填写多个
"email_on_failure": True, # 触发邮件发送的 时机,此处为失败时触发
} # 定义一个DAG
# 参数catchup指 是否填充执行 start_date到现在 未执行的缺少任务;如:start_date定义为2019-10-10,现在是2019-10-29,任务是每天定时执行一次,
# 如果此参数设置为True,则 会生成 10号到29号之间的19此任务;如果设置为False,则不会补充执行任务;
# schedule_interval:定时执行方式,推荐使用如下字符串方式, 方便写出定时规则的网址:https://crontab.guru/
dag = DAG("HttpSendDag", catchup=False, default_args=args, schedule_interval="0 19 * * *")
# 设置 dag文档注释,可在web界面任务详情中看到
dag.doc_md = __doc__ # 定义此 http operator相关详情,详细使用方法 可访问此类定义__init__()方法
task = SimpleHttpOperator(
task_id="task_http_send", # 任务id
http_conn_id="oly_host", # http请求地址,值为上面23行定义
method="POST", # http请求方法
endpoint="user/manage", # http请求路径
dag=dag # 任务所属dag
)
# 定义任务 文档注释,可在web界面任务详情中看到
task.doc_md = f"""\
#Usage
此任务主要向Project服务({Variable.get("OLY_HOST_%s" % env)})发送http请求,每天晚上7点定时运行!
"""
任务间数据交流方法
使用Xcoms(cross-communication),类似于redis存储结构,任务推送数据或者从中下拉数据,数据在任务间共享
推送数据主要有2中方式:1:使用xcom_push()方法 2:直接在PythonOperator中调用的函数 return即可
下拉数据 主要使用 xcom_pull()方法
官方代码示例及注释:
from __future__ import print_function import airflow
from airflow import DAG
from airflow.operators.python_operator import PythonOperator args = {
'owner': 'airflow',
'start_date': airflow.utils.dates.days_ago(2),
'provide_context': True,
} dag = DAG('example_xcom', schedule_interval="@once", default_args=args) value_1 = [1, 2, 3]
value_2 = {'a': 'b'} # 2种推送数据的方式,分别为xcom_push,和直接return def push(**kwargs):
"""Pushes an XCom without a specific target"""
kwargs['ti'].xcom_push(key='value from pusher 1', value=value_1) def push_by_returning(**kwargs):
"""Pushes an XCom without a specific target, just by returning it"""
return value_2 def puller(**kwargs):
"""
下拉数据的方法
:param kwargs:
:return:
"""
ti = kwargs['ti'] # get value_1
v1 = ti.xcom_pull(key=None, task_ids='push')
assert v1 == value_1 # get value_2
v2 = ti.xcom_pull(task_ids='push_by_returning')
assert v2 == value_2 # get both value_1 and value_2
v1, v2 = ti.xcom_pull(key=None, task_ids=['push', 'push_by_returning'])
assert (v1, v2) == (value_1, value_2) push1 = PythonOperator(
task_id='push',
dag=dag,
python_callable=push,
) push2 = PythonOperator(
task_id='push_by_returning',
dag=dag,
python_callable=push_by_returning,
) pull = PythonOperator(
task_id='puller',
dag=dag,
python_callable=puller,
) # 任务执行顺序为
# push1 >> pull
# push2 >> pull pull << [push1, push2]
开启 web网页登录需要用户名密码功能
1.airflow.cfg文件修改
# 设置为True
rbac = True
2.重启airflow相关服务
3.通过 命令行 添加 用户
airflow create_user -r Admin -e service@xxx.com -f A -l dmin -u admin -p passwd
4.访问页面,输入用户名,密码即可
忽略某些DAG文件,不调用
在dag任务文件夹下,添加一个 .airflowignore文件(像 .gitignore),里面写 文件名即可(支持正则)
启动及关闭airflow内置 dag示例方法(能够快速学习Airflow)
开启:修改airflow.cfg配置文件 load_examples = True 并重启即可
关闭:修改airflow.cfg配置文件 load_examples = True,并清空数据库,并重启即可
效果图:
airflow配置文件 相关中文注解:
[core]
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
# 绝对路径下 一系列dags存放位置,airflow只会从此路径 文件夹下找dag任务
dags_folder = /mnt/e/airflow_project/dags # The folder where airflow should store its log files
# This path must be absolute
# 绝对路径下的日志文件夹位置
base_log_folder = /mnt/e/airflow_project/log/ # Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
# Users must supply an Airflow connection id that provides access to the storage
# location. If remote_logging is set to true, see UPDATING.md for additional
# configuration requirements.
remote_logging = False
remote_log_conn_id =
remote_base_log_folder =
encrypt_s3_logs = False # Logging level
logging_level = INFO
fab_logging_level = WARN # Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class = # Log format
# Colour the logs when the controlling terminal is a TTY.
colored_console_log = True
colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s # Log filename format
# 实际处理任务日志 相关
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
log_processor_filename_template = {{ filename }}.log
# dag处理日志 绝对路径,精确到日志文件
dag_processor_manager_log_location = /mnt/e/airflow_project/log/dag_processor_manager.log # Hostname by providing a path to a callable, which will resolve the hostname
# The format is "package:function". For example,
# default value "socket:getfqdn" means that result from getfqdn() of "socket" package will be used as hostname
# No argument should be required in the function specified.
# If using IP address as hostname is preferred, use value "airflow.utils.net:get_host_ip_address"
hostname_callable = socket:getfqdn # Default timezone in case supplied date times are naive
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
# 默认时区,改为上海,然而 没卵用
default_timezone = Asia/Shanghai # The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor, KubernetesExecutor
# 指定executor(任务分配执行方式)
executor = CeleryExecutor # The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
# 存储airflow相关数据的 数据库路径
sql_alchemy_conn = mysql+pymysql://root:passwd@127.0.0.1:3306/airflow_db # The encoding for the databases
sql_engine_encoding = utf-8 # If SqlAlchemy should pool database connections.
sql_alchemy_pool_enabled = True # The SqlAlchemy pool size is the maximum number of database connections
# in the pool. 0 indicates no limit.
sql_alchemy_pool_size = 5 # The maximum overflow size of the pool.
# When the number of checked-out connections reaches the size set in pool_size,
# additional connections will be returned up to this limit.
# When those additional connections are returned to the pool, they are disconnected and discarded.
# It follows then that the total number of simultaneous connections the pool will allow is pool_size + max_overflow,
# and the total number of "sleeping" connections the pool will allow is pool_size.
# max_overflow can be set to -1 to indicate no overflow limit;
# no limit will be placed on the total number of concurrent connections. Defaults to 10.
sql_alchemy_max_overflow = 10 # The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite. If the number of DB connections is ever exceeded,
# a lower config value will allow the system to recover faster.
sql_alchemy_pool_recycle = 1800 # How many seconds to retry re-establishing a DB connection after
# disconnects. Setting this to 0 disables retries.
sql_alchemy_reconnect_timeout = 300 # The schema to use for the metadata database
# SqlAlchemy supports databases with the concept of multiple schemas.
sql_alchemy_schema = # The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32 # The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16 # Are DAGs paused by default at creation
dags_are_paused_at_creation = True # The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16 # Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = False # Where your Airflow plugins are stored
# 自定义 界面及api所在 绝对路径文件夹 官网用法: http://airflow.apache.org/plugins.html
plugins_folder = /mnt/e/airflow_project/plugins # Secret key to save connection passwords in the db
# 对使用到的 连接密码 进行加密,此为秘钥 官网用法: https://airflow.apache.org/howto/secure-connections.html
fernet_key = Et8ULvn0biL8X0xXl66wHawhdetf7utIDYDgNzZh4nCnE= # Whether to disable pickling dags
donot_pickle = False # How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30 # The class to use for running task instances in a subprocess
task_runner = StandardTaskRunner # If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation = # What security module to use (for example kerberos):
security = # If set to False enables some unsecure features like Charts and Ad Hoc Queries.
# In 2.0 will default to True.
secure_mode = False # Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False # Name of handler to read task instance logs.
# Default to use task handler.
task_log_reader = task # Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True # When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60 # Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow backfill -c` or
# `airflow trigger_dag -c`, the key-value pairs will override the existing ones in params.
dag_run_conf_overrides_params = False # Worker initialisation check to validate Metadata Database connection
worker_precheck = False # When discovering DAGs, ignore any files that don't contain the strings `DAG` and `airflow`.
dag_discovery_safe_mode = True [cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client # If you set web_server_url_prefix, do NOT forget to append it here, ex:
# endpoint_url = http://localhost:8080/myroot
# So api will look like: http://localhost:8080/myroot/api/experimental/...
endpoint_url = http://localhost:18080 [api]
# How to authenticate users of the API
auth_backend = airflow.api.auth.backend.default [lineage]
# what lineage backend to use
backend = [atlas]
sasl_enabled = False
host =
port = 21000
username =
password = [operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via `default_args`
default_owner = airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0 [hive]
# Default mapreduce queue for HiveOperator tasks
default_hive_mapred_queue = [webserver]
# web端访问配置
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:18080 # The ip specified when starting the web server
web_server_host = 0.0.0.0 # The port on which to run the web server
web_server_port = 18080 # Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key = # Number of seconds the webserver waits before killing gunicorn master that doesn't respond
web_server_master_timeout = 120 # Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120 # Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1 # Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30 # Secret key used to run your flask app
secret_key = temporary_key # Number of workers to run the Gunicorn web server
workers = 4 # The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync # Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = - # Expose the configuration file in the web server
# This is only applicable for the flask-admin based web UI (non FAB-based).
# In the FAB-based web UI with RBAC feature,
# access to configuration is controlled by role permissions.
expose_config = False # Set to true to turn on authentication:
# https://airflow.apache.org/security.html#web-authentication
authenticate = False # Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False # Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user # Default DAG view. Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree # Default DAG orientation. Valid values are:
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR # Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False # The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5 # By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False # Consistent page size across all listing views in the UI
page_size = 100 # Use FAB-based webserver with RBAC feature
# 是否登录时 需要用户名 密码 验证功能;https://airflow.apache.org/security.html#rbac-ui-security
rbac = False # Define the color of navigation bar
navbar_color = #007A87 # Default dagrun to show in UI
default_dag_run_display_number = 25 # Enable werkzeug `ProxyFix` middleware
enable_proxy_fix = False # Set secure flag on session cookie
cookie_secure = False # Set samesite policy on session cookie
cookie_samesite = # Default setting for wrap toggle on DAG code and TI log views.
default_wrap = False # Send anonymous user activity to your analytics tool
# analytics_tool = # choose from google_analytics, segment, or metarouter
# analytics_id = XXXXXXXXXXX [email]
email_backend = airflow.utils.email.send_email_smtp
# 邮件html模板绝对路径位置
html_content_template = /mnt/e/airflow_project/airflow_config/local/email_template [smtp]
# If you want airflow to send emails on retries, failure, and you want to use
# the airflow.utils.email.send_email_smtp function, you have to configure an
# smtp server here
# 邮件服务 相关配置,根据实际情况配置
smtp_host = smtp.exmail.qq.com
smtp_starttls = False
smtp_ssl = True
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
smtp_user = xxx@xxx.com
smtp_password = xxx
smtp_port = 465
smtp_mail_from = xxx@xxx.com [celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above # The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor # The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
worker_concurrency = 16 # The maximum and minimum concurrency that will be used when starting workers with the
# "airflow worker" command (always keep minimum processes, but grow to maximum if necessary).
# Note the value should be "max_concurrency,min_concurrency"
# Pick these numbers based on resources on worker box and the nature of the task.
# If autoscale option is available, worker_concurrency will be ignored.
# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
# worker_autoscale = 16,12 # When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793 # The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
# celery服务 broker连接,此处使用 rabbitmq
broker_url = pyamqp://role:passwd@127.0.0.1:5672/ # The Celery result_backend. When a job finishes, it needs to update the
# metadata of the job. Therefore it will post a message on a message bus,
# or insert it into a database (depending of the backend)
# This status is used by the scheduler to update the state of the task
# The use of a database is highly recommended
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
# celery服务 结果存储连接
result_backend = redis://localhost/15 # Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0 # The root URL for Flower
# Ex: flower_url_prefix = /flower
flower_url_prefix = # This defines the port that Celery Flower runs on
flower_port = 5555 # Securing Flower with Basic Authentication
# Accepts user:password pairs separated by a comma
# Example: flower_basic_auth = user1:password1,user2:password2
flower_basic_auth = # Default queue that tasks get assigned to and that worker listen on.
default_queue = default # How many processes CeleryExecutor uses to sync task state.
# 0 means to use max(1, number of cores - 1) processes.
sync_parallelism = 0 # Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG # In case of using SSL
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert = # Celery Pool implementation.
# Choices include: prefork (default), eventlet, gevent or solo.
# See:
# https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency
# https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html
pool = prefork [celery_broker_transport_options]
# This section is for specifying options which can be passed to the
# underlying celery broker transport. See:
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options # The visibility timeout defines the number of seconds to wait for the worker
# to acknowledge the task before the message is redelivered to another worker.
# Make sure to increase the visibility timeout to match the time of the longest
# ETA you're planning to use.
#
# visibility_timeout is only supported for Redis and SQS celery brokers.
# See:
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
#
#visibility_timeout = 21600 [dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above # The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
# TLS/ SSL settings to access a secured Dask scheduler.
tls_ca =
tls_cert =
tls_key = [scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5 # The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5 # after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1 # after how much time (seconds) a new DAGs should be picked up from the filesystem
min_file_process_interval = 0 # How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
dag_dir_list_interval = 300 # How often should stats be printed to the logs
print_stats_interval = 30 # If the last scheduler heartbeat happened more than scheduler_health_check_threshold ago (in seconds),
# scheduler is considered unhealthy.
# This is used by the health check in the "/health" endpoint
scheduler_health_check_threshold = 30 # 定时任务 日志位置
child_process_log_directory = /mnt/e/airflow_project/log/airflow/scheduler # Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300 # Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True # This changes the batch size of queries in the scheduling main loop.
# If this is too high, SQL query performance may be impacted by one
# or more of the following:
# - reversion to full table scan
# - complexity of query predicate
# - excessive locking
#
# Additionally, you may hit the maximum allowable query length for your db.
#
# Set this to 0 for no limit (not advised)
max_tis_per_query = 512 # Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = True
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow # The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2 authenticate = False # Turn off scheduler use of cron intervals by setting this to False.
# DAGs submitted manually in the web UI or with trigger_dag will still run.
use_job_schedule = True [ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL # This setting allows the use of LDAP servers that either return a
# broken schema, or do not return a schema.
ignore_malformed_schema = False [mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050 # The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow # Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1 # Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256 # Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False # Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800 # Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False # Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin # Optional Docker Image to run on slave before running the command
# This image should be accessible from mesos slave i.e mesos slave
# should be able to pull this docker image before executing the command.
# docker_image_slave = puckel/docker-airflow [kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab [github_enterprise]
api_rev = v3 [admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True [elasticsearch]
# Elasticsearch host
host =
# Format of the log_id, which is used to query for a given tasks logs
log_id_template = {dag_id}-{task_id}-{execution_date}-{try_number}
# Used to mark the end of a log stream for a task
end_of_log_mark = end_of_log
# Qualified URL for an elasticsearch frontend (like Kibana) with a template argument for log_id
# Code will construct log_id using the log_id template from the argument above.
# NOTE: The code will prefix the https:// automatically, don't include that here.
frontend =
# Write the task logs to the stdout of the worker, rather than the default files
write_stdout = False
# Instead of the default log formatter, write the log lines as JSON
json_format = False
# Log fields to also attach to the json output, if enabled
json_fields = asctime, filename, lineno, levelname, message [elasticsearch_configs] use_ssl = False
verify_certs = True [kubernetes]
# The repository, tag and imagePullPolicy of the Kubernetes Image for the Worker to Run
worker_container_repository =
worker_container_tag =
worker_container_image_pull_policy = IfNotPresent # If True (default), worker pods will be deleted upon termination
delete_worker_pods = True # Number of Kubernetes Worker Pod creation calls per scheduler loop
worker_pods_creation_batch_size = 1 # The Kubernetes namespace where airflow workers should be created. Defaults to `default`
namespace = default # The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
airflow_configmap = # For docker image already contains DAGs, this is set to `True`, and the worker will search for dags in dags_folder,
# otherwise use git sync or dags volume claim to mount DAGs
dags_in_image = False # For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
dags_volume_subpath = # For DAGs mounted via a volume claim (mutually exclusive with git-sync and host path)
dags_volume_claim = # For volume mounted logs, the worker will look in this subpath for logs
logs_volume_subpath = # A shared volume claim for the logs
logs_volume_claim = # For DAGs mounted via a hostPath volume (mutually exclusive with volume claim and git-sync)
# Useful in local environment, discouraged in production
dags_volume_host = # A hostPath volume for the logs
# Useful in local environment, discouraged in production
logs_volume_host = # A list of configMapsRefs to envFrom. If more than one configMap is
# specified, provide a comma separated list: configmap_a,configmap_b
env_from_configmap_ref = # A list of secretRefs to envFrom. If more than one secret is
# specified, provide a comma separated list: secret_a,secret_b
env_from_secret_ref = # Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
git_repo =
git_branch =
git_subpath =
# Use git_user and git_password for user authentication or git_ssh_key_secret_name and git_ssh_key_secret_key
# for SSH authentication
git_user =
git_password =
git_sync_root = /git
git_sync_dest = repo
# Mount point of the volume if git-sync is being used.
# i.e. /Users/wudong/work/Python/flow/dags
git_dags_folder_mount_point = # To get Git-sync SSH authentication set up follow this format
#
# airflow-secrets.yaml:
# ---
# apiVersion: v1
# kind: Secret
# metadata:
# name: airflow-secrets
# data:
# # key needs to be gitSshKey
# gitSshKey: <base64_encoded_data>
# ---
# airflow-configmap.yaml:
# apiVersion: v1
# kind: ConfigMap
# metadata:
# name: airflow-configmap
# data:
# known_hosts: |
# github.com ssh-rsa <...>
# airflow.cfg: |
# ...
#
# git_ssh_key_secret_name = airflow-secrets
# git_ssh_known_hosts_configmap_name = airflow-configmap
git_ssh_key_secret_name =
git_ssh_known_hosts_configmap_name = # To give the git_sync init container credentials via a secret, create a secret
# with two fields: GIT_SYNC_USERNAME and GIT_SYNC_PASSWORD (example below) and
# add `git_sync_credentials_secret = <secret_name>` to your airflow config under the kubernetes section
#
# Secret Example:
# apiVersion: v1
# kind: Secret
# metadata:
# name: git-credentials
# data:
# GIT_SYNC_USERNAME: <base64_encoded_git_username>
# GIT_SYNC_PASSWORD: <base64_encoded_git_password>
git_sync_credentials_secret = # For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
git_sync_container_repository = k8s.gcr.io/git-sync
git_sync_container_tag = v3.1.1
git_sync_init_container_name = git-sync-clone
git_sync_run_as_user = 65533 # The name of the Kubernetes service account to be associated with airflow workers, if any.
# Service accounts are required for workers that require access to secrets or cluster resources.
# See the Kubernetes RBAC documentation for more:
# https://kubernetes.io/docs/admin/authorization/rbac/
worker_service_account_name = # Any image pull secrets to be given to worker pods, If more than one secret is
# required, provide a comma separated list: secret_a,secret_b
image_pull_secrets = # GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
gcp_service_account_keys = # Use the service account kubernetes gives to pods to connect to kubernetes cluster.
# It's intended for clients that expect to be running inside a pod running on kubernetes.
# It will raise an exception if called from a process not running in a kubernetes environment.
in_cluster = True # When running with in_cluster=False change the default cluster_context or config_file
# options to Kubernetes client. Leave blank these to use default behaviour like `kubectl` has.
# cluster_context =
# config_file = # Affinity configuration as a single line formatted JSON object.
# See the affinity model for top-level key names (e.g. `nodeAffinity`, etc.):
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#affinity-v1-core
affinity = # A list of toleration objects as a single line formatted JSON array
# See:
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#toleration-v1-core
tolerations = # **kwargs parameters to pass while calling a kubernetes client core_v1_api methods from Kubernetes Executor
# provided as a single line formatted JSON dictionary string.
# List of supported params in **kwargs are similar for all core_v1_apis, hence a single config variable for all apis
# See:
# https://raw.githubusercontent.com/kubernetes-client/python/master/kubernetes/client/apis/core_v1_api.py
# Note that if no _request_timeout is specified, the kubernetes client will wait indefinitely for kubernetes
# api responses, which will cause the scheduler to hang. The timeout is specified as [connect timeout, read timeout]
kube_client_request_args = {"_request_timeout" : [60,60] } # Worker pods security context options
# See:
# https://kubernetes.io/docs/tasks/configure-pod-container/security-context/ # Specifies the uid to run the first process of the worker pods containers as
run_as_user = # Specifies a gid to associate with all containers in the worker pods
# if using a git_ssh_key_secret_name use an fs_group
# that allows for the key to be read, e.g. 65533
fs_group = [kubernetes_node_selectors]
# The Key-value pairs to be given to worker pods.
# The worker pods will be scheduled to the nodes of the specified key-value pairs.
# Should be supplied in the format: key = value [kubernetes_annotations]
# The Key-value annotations pairs to be given to worker pods.
# Should be supplied in the format: key = value [kubernetes_environment_variables]
# The scheduler sets the following environment variables into your workers. You may define as
# many environment variables as needed and the kubernetes launcher will set them in the launched workers.
# Environment variables in this section are defined as follows
# <environment_variable_key> = <environment_variable_value>
#
# For example if you wanted to set an environment variable with value `prod` and key
# `ENVIRONMENT` you would follow the following format:
# ENVIRONMENT = prod
#
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
# formatting as supported by airflow normally. [kubernetes_secrets]
# The scheduler mounts the following secrets into your workers as they are launched by the
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
# defined secrets and mount them as secret environment variables in the launched workers.
# Secrets in this section are defined as follows
# <environment_variable_mount> = <kubernetes_secret_object>=<kubernetes_secret_key>
#
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
# your workers you would follow the following format:
# POSTGRES_PASSWORD = airflow-secret=postgres_credentials
#
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
# formatting as supported by airflow normally. [kubernetes_labels]
# The Key-value pairs to be given to worker pods.
# The worker pods will be given these static labels, as well as some additional dynamic labels
# to identify the task.
# Should be supplied in the format: key = value
错误记录:
* 设置supervisor启动airflow服务时,报错如下
Error: No module named airflow.www.gunicorn_config
* 处理方式
在supervisor的配置文件的 environment常量中添加 PATH="/home/work/www/jerry/venv/bin:%(ENV_PATH)s"
* web界面报错
KeyError: 'Variable xxx does not exist'
* 处理方式
在airflow网页的Admin=>Variables页面添加对应的 变量
相关网址:http://airflow.apache.org/index.html
Airflow速用的更多相关文章
- 旺财速啃H5框架之Bootstrap(五)
在上一篇<<旺财速啃H5框架之Bootstrap(四)>>做了基本的框架,<<旺财速啃H5框架之Bootstrap(二)>>篇里也大体认识了bootst ...
- 旺财速啃H5框架之Bootstrap(四)
上一篇<<旺财速啃H5框架之Bootstrap(三)>>已经把导航做了,接下来搭建内容框架.... 对于不规整的网页,要做成自适应就有点玩大了.... 例如下面这种版式的页面. ...
- 旺财速啃H5框架之Bootstrap(三)
好多天没有写了,继续走起 在上一篇<<旺财速啃H5框架之Bootstrap(二)>>中已经把CSS引入到页面中,接下来开始写页面. 首先有些问题要先处理了,问什么你要学boot ...
- .NET平台开源项目速览(17)FluentConsole让你的控制台酷起来
从该系列的第一篇文章 .NET平台开源项目速览(1)SharpConfig配置文件读写组件 开始,不知不觉已经到第17篇了.每一次我们都是介绍一个小巧甚至微不足道的.NET平台的开源软件,或者学习,或 ...
- .NET平台开源项目速览(15)文档数据库RavenDB-介绍与初体验
不知不觉,“.NET平台开源项目速览“系列文章已经15篇了,每一篇都非常受欢迎,可能技术水平不高,但足够入门了.虽然工作很忙,但还是会抽空把自己知道的,已经平时遇到的好的开源项目分享出来.今天就给大家 ...
- .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍
Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...
- 提升网速的路由器优化方法(UPnP、QoS、MTU、交换机模式、无线中继)
在上一篇<为什么房间的 Wi-Fi 信号这么差>中,猫哥从微波炉.相对论.人存原理出发,介绍了影响 Wi-Fi 信号强弱的几大因素,接下来猫哥再给大家介绍几种不用升级带宽套餐也能提升网速的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- .NET平台开源项目速览(1)SharpConfig配置文件读写组件
在.NET平台日常开发中,读取配置文件是一个很常见的需求.以前都是使用System.Configuration.ConfigurationSettings来操作,这个说实话,搞起来比较费劲.不知道大家 ...
随机推荐
- BOM之window核心模块
Window对象包含以下五大核心:document,screen,navigator,history,location. 一 document 文档 document包含了浏览器对标准DOM实 ...
- jenkins自动化部署项目2 --插件的选择和安装
一.安装插件: 我选择的安装建议的插件,也可以自定义安装自己想要的插件,在不敢保证自己确定要用的插件是完全正确的情况下建议按推荐安装 我理解的jenkins+tomcat完成自动化部署maven项目需 ...
- 安装vue开发环境
每次搜索vue开发环境安装时,总是有很多种版本,虽然都能安装完成,但还是整理下自己觉得比较好的版本吧 1.首先安装nodeJs以及也把git安装好(反正开发也是需要git),安装完成后执行 node ...
- Redis数据库之编程项目及练习资源
实训项目 : NOSQL数据库设计与应用实训 注释: Redis数据库编程项目示例及练习资源 项目源码获取: https://pan.baidu.com/s/19f0F7cmx ...
- Oozie、Flume、Mahout配置与应用
-------------------------Oozie-------------------- [一.部署] 1)部署Oozie服务端 [root@cMaster~]#sudo yum inst ...
- Vsftp服务-实战案例
Vsftp 实验案例一:(本地用户) 试验版本:Linux7.X版本 公司内部现在有一台FTP 和WEB 服务器,FTP 的功能主要用于维护公司的网站内容,包括上传文 件.创建目录.更新网页等等.公司 ...
- SkyWalking系列(一):初探
SkyWalking已经再微服务商城系列里使用了,本篇将介绍如何再Windows系统下安装并简单使用. 1.下载SkyWaling 本篇测试使用6.0版本:http://skywalking.apac ...
- ARP攻击原理简析及防御措施
0x1 简介 网络欺骗攻击作为一种非常专业化的攻击手段,给网络安全管理者,带来严峻的考验.网络安全的战场已经从互联网蔓延到用户内部的网络, 特别是局域网.目前利用ARP欺骗的木马病毒在局域网中广泛传 ...
- Kafka 学习笔记之 High Level Consumer相关参数
High Level Consumer相关参数 自动管理offset auto.commit.enable = true auto.commit.interval.ms = 60*1000 手动管理o ...
- ASP.NET Core MVC/API(一)
ASP.NET Core MVC/API(一) 文件夹说明 Pages文件夹:包括了Razor页面和支持文件 .cshtml文件:是使用了Razor语法的C#代码的HTML页面 .cshtml.cs文 ...