1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径。

我们用一个例子来具体说明迪杰斯特拉算法的流程。

定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径。其过程描述如下:

步骤 dist[1] dist[2] dist[3] dist[4] 已找到的集合
第 1 步 8 1 2 +∞ {2}
第 2 步 8 × 2 4 {2, 3}
第 3 步 5 × × 4 {2, 3, 4}
第 4 步 5 × × × {2, 3, 4, 1}
第 5 步 × × × × {2, 3, 4, 1}

第 1 步:从源点 0 开始,找到与其邻接的点:1,2,3,更新dist[]数组,因 0 不与 4 邻接,故dist[4]为正无穷。在dist[]中找到最小值,其顶点为 2,即此时已找到 0 到 2 的最短路。

第 2 步:从 2 开始,继续更新dist[]数组:2 与 1 不邻接,不更新;2 与 3 邻接,因0→2→3dist[3]大,故不更新dist[3] ;2 与 4 邻接,因0→2→4dist[4]小,故更新dist[4]为 4。在dist[]中找到最小值,其顶点为 3,即此时又找到 0 到 3 的最短路。

第 3 步:从 3 开始,继续更新dist[]数组:3 与 1 邻接,因0→3→1dist[1]小,更新dist[1]为 5;3 与 4 邻接,因0→3→4dist[4]大,故不更新。在dist[]中找到最小值,其顶点为 4,即此时又找到 0 到 4 的最短路。

第 4 步:从 4 开始,继续更新dist[]数组:4 与 1 不邻接,不更新。在dist[]中找到最小值,其顶点为 1,即此时又找到 0 到 1 的最短路。

第 5 步:所有点都已找到,停止。

对于上述步骤,你可能存在以下的疑问:

若 A 作为源点,与其邻接的只有 B,C,D 三点,其dist[]最小时顶点为 C,即就可以确定A→C为 A 到 C 的最短路。但是我们存在疑问的是:是否还存在另一条路径使 A 到 C 的距离更小? 用反证法证明。

假设存在如上图的红色虚线路径,使A→D→C的距离更小,那么A→D作为A→D→C的子路径,其距离也比A→C小,这与前面所述 “dist[]最小时顶点为 C” 矛盾,故假设不成立。因此这个疑问不存在。

根据上面的证明,我们可以推断出,Dijkstra 每次循环都可以确定一个顶点的最短路径,故程序需要循环 n-1 次。

/*
迪杰斯特拉求单节点到其余各节点的最短路径。
visited数组用于保存顶点是否已经求过最短路径,pre数组用于保存最短路径的下标
dist数组用于保存初始节点到其余节点的最短路径长度。
该算法求有向图G的某顶点到其余节点的最短路径pre以及长度dist
pre[v]的值是v0-->...->v的路径中的前驱节点。D[v]表示v0-->...-->v的最短路径长度和。 可以证明迪杰斯特拉算法每次循环可以确定一个顶点的最短路径,所以主程序循环n-1次。
主程序循环主要做两件事:首先找出dist数组中的最小值,并记录下标,说明找到初始点到该下标的最短路径。
然后要比价初始点到该点的最短路径加上这点到其他初始点需要到的点的距离是否比初始点直接到这些点的距离短
如果要短,那么就更新dist数组,并且这些点的前驱节点就会变为v而不是开始的v0点。下一次主循环再去从dist中找
最小的值并且未求过的点,就是该点的最短路径。
*/
#include<iostream>
using namespace std;
int matrix[][];//邻接矩阵
bool visited[];//标记数组
int dist[];//原点到i顶点的最短距离
int pre[];//记录最短路径。pre[i]放的是i的前驱节点
int source;//源节点
int vertex_num;//顶点数
int edge_num;//边数 void Dijkstra(int source)
{
//首先初始化
memset(visited,,sizeof(visited));
visited[source] = true;
for (int i = ; i < vertex_num; i++)
{
dist[i] = matrix[source][i];
pre[i] = source;
} int min_cost;//最短距离
int min_cost_index;//权值最小的那个顶点的下标。(求好了)
//主循环
for (int i = ; i < vertex_num; i++)
{
min_cost = INT_MAX;
for (int j = ; j < vertex_num; j++)
{
//注意要确保这个点没有找过。
if (visited[j]==false&&dist[j] < min_cost)
{
min_cost_index = j;
min_cost = dist[j];
}
} visited[min_cost_index] = true;//找到某一个点的最短距离
//利用该点进行dist的更新,并且调整前驱。
for (int j = ; j < vertex_num; j++)
{
//确保有连接
if (visited[j] == false && matrix[min_cost_index][j] != INT_MAX&&min_cost+ matrix[min_cost_index][j] < dist[j])
{
dist[j] = min_cost + matrix[min_cost_index][j];
pre[j] = min_cost_index;
}
}
}
} int main()
{
cout << "请输入图的顶点数(<100):";
cin >> vertex_num;
cout << "请输出图的边数: ";
cin >> edge_num;
for (int i = ; i < vertex_num; i++)
{
for (int j = ; j < vertex_num; j++)
{
matrix[i][j] = (i != j) ? INT_MAX : ;
}
}
cout << "请输入边的信息:\n";
int u, v, w;
for (int i = ; i < edge_num; i++)
{
cin >> u >> v >> w;
matrix[u][v] = matrix[v][u] = w;
} cout << "请输入源点(<" << vertex_num << "): ";
cin >> source;
Dijkstra(source);
for (int i = ; i < vertex_num; i++)
{
if (i != source)
{
//路径是反的,从目标点向前不断找前驱的过程。
cout << source << "到" << i << "最短距离: " << dist[i] << ",路径是:" << i;
int t = pre[i];
while (t != source)
{
cout << "--" << t;
t = pre[t];
}
cout << "--" << source << endl;
}
}
return ;
}

2、弗洛伊德算法:

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; void Floyd(MGraph g)
{
  int A[MAXV][MAXV];
  int path[MAXV][MAXV];
  int i,j,k,n=g.n;
  for(i=;i<n;i++)
  for(j=;j<n;j++)
  {   
A[i][j]=g.edges[i][j];
   path[i][j]=-;
  }
  for(k=;k<n;k++)
  {
  for(i=;i<n;i++)
  for(j=;j<n;j++)
  if(A[i][j]>(A[i][k]+A[k][j]))
  {
  A[i][j]=A[i][k]+A[k][j];
  path[i][j]=k;
  }
 }
}

//代码来自于wsw_seu大佬

//仅仅是作为笔记,谢谢

最小路径算法(Dijkstra算法和Floyd算法)的更多相关文章

  1. 最短路径——Dijkstra算法和Floyd算法

    Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...

  2. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  3. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  4. 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...

  5. 【转】最短路径——Dijkstra算法和Floyd算法

    [转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径—大话Dijkstra算法和Floyd算法

    Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...

  8. 最短路径—Dijkstra算法和Floyd算法【转】

    本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...

  9. 【转载】最短路径—Dijkstra算法和Floyd算法

    注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...

随机推荐

  1. 过滤器、拦截器和AOP的分析与对比

    目录 一.过滤器(Filter) 1.1 简介 1.2 应用场景 1.3 源码分析 二.拦截器(Interceptor) 2.1 简介 2.2 应用场景 2.2 源码分析 三.面向切面编程(AOP) ...

  2. 中文预训练模型ERNIE2.0模型下载及安装

    2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优 ...

  3. egg-sequelize --- nodejs

    项目 egg + sequelize + mysql2 项目结构 配置 安装模块 npm install --save egg-sequelize npm install --save egg-cor ...

  4. Arthas - Java 线上问题定位处理的终极利器

    前言 在使用 Arthas 之前,当遇到 Java 线上问题时,如 CPU 飙升.负载突高.内存溢出等问题,你需要查命令,查网络,然后 jps.jstack.jmap.jhat.jstat.hprof ...

  5. 基于verdaccio的npm私有仓库搭建

    详见个人博客:https://shengchangwei.github.io/verdaccio/ 一.使用npm安装 npm install --global verdaccio 二.cmd 启动 ...

  6. 百度NLP预训练模型ERNIE2.0最强实操课程来袭!【附教程】

    2019年3月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨.经过短短几个月时间,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基 ...

  7. 修改tomcat默认使用的jdk版本

    1.windows平台 在csetclasspath.bat文件开头加上如下两句(指定JDK): set JAVA_HOME=C:\Program Files\Java\jdk1.7.0_79  se ...

  8. RobotFramework自动化测试框架-Selenium Web自动化(二)关于在RobotFramework中如何使用Selenium很全的总结(上)

    好久没有继续分享关于自动化测试相关的东西了,自动化在现今的测试领域已经越来越重要了,大部分公司在测试岗位招聘中都需要会相关的自动化测试知识.而 RobotFramework自动化测试框架 是自动化测试 ...

  9. [考试反思]0809NOIP模拟测试15:解剖

    说在前面: 不建议阅读.这里没有考试经验,只有一大堆负面情绪. 看了你不会有什么收获.看完了就不要怪我影响了你的心情. 以后不粘排行榜了.没什么意思没什么用. 但是我的意思并不是因为这次没考好的一时兴 ...

  10. permu 莫队 总结

    由于每次询问静态区间里完整值域段的最大大小 貌似很好用莫队转移,所以考虑怎么转移 当给它扩展一个数时,就是给值域添加了一个值 这个值可能已经存在,也可能是新的 有的神仙做法是维护了一个并查集,然而我这 ...