线程的读写锁函数:

1,读写锁的初始化与销毁,静态初始化的话,可以直接使用PTHREAD_RWLOCK_INITIALIZER。

#include <pthread.h>
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

2,用读的方式加锁和尝试(没锁上就立即返回)加锁。

#include <pthread.h>
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

3,用写的方式加锁和尝试(没锁上就立即返回)加锁。

#include <pthread.h>
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

4,解锁

#include <pthread.h>
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

多个进程在同时读写同一个文件,会发生什么?

例子1:用下面的例子的执行结果,观察多个进程在同时读写同一个文件,会发生什么。

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> #define MAXLINE 100
#define FN "num1" void my_lock(int fd){
return;
} void my_unlock(int fd){
return;
} int main(int args, char** argv){ int fd;
long i,seqno;
pid_t pid;
ssize_t n;
char line[MAXLINE + 1]; pid = getpid();
fd = open(FN, O_RDWR, 0664); for(i = 0; i < 20; ++i){
my_lock(fd); lseek(fd, 0L, SEEK_SET);
n = read(fd, line, MAXLINE);
line[n] = '\0'; seqno = atol(line);
printf("%s:pid = %ld, seq = %ld\n", argv[0], (long)pid, seqno); seqno++; snprintf(line, sizeof(line), "%ld\n", seqno); lseek(fd, 0L, SEEK_SET);
write(fd, line, strlen(line)); my_unlock(fd);
} return 0;
}

执行方法:同时执行上面例子的程序2次,也就是2个进程同时读写同一个文件。

ubuntu$ ./flockmain1 & ./flockmain1 &

执行结果如下,发现2个进程同时读写,在①处开始,内核切换进程时,数字乱套了。

ubuntu$ ./flockmain1 & ./flockmain1 &
[1] 4760
[2] 4761
ubuntu$ ./flockmain1:pid = 4761, seq = 1
./flockmain1:pid = 4761, seq = 2
./flockmain1:pid = 4761, seq = 3
./flockmain1:pid = 4761, seq = 4
./flockmain1:pid = 4761, seq = 5
./flockmain1:pid = 4761, seq = 6
./flockmain1:pid = 4761, seq = 7
./flockmain1:pid = 4761, seq = 8
./flockmain1:pid = 4761, seq = 9
./flockmain1:pid = 4761, seq = 10 ------------①
./flockmain1:pid = 4760, seq = 10
./flockmain1:pid = 4761, seq = 11
./flockmain1:pid = 4761, seq = 12
./flockmain1:pid = 4761, seq = 13
./flockmain1:pid = 4761, seq = 14
./flockmain1:pid = 4761, seq = 15
./flockmain1:pid = 4761, seq = 16
./flockmain1:pid = 4761, seq = 17
./flockmain1:pid = 4761, seq = 18
./flockmain1:pid = 4761, seq = 19
./flockmain1:pid = 4761, seq = 20
./flockmain1:pid = 4760, seq = 11
./flockmain1:pid = 4760, seq = 12
./flockmain1:pid = 4760, seq = 13
./flockmain1:pid = 4760, seq = 14
./flockmain1:pid = 4760, seq = 15
./flockmain1:pid = 4760, seq = 16
./flockmain1:pid = 4760, seq = 17
./flockmain1:pid = 4760, seq = 18
./flockmain1:pid = 4760, seq = 19
./flockmain1:pid = 4760, seq = 20
./flockmain1:pid = 4760, seq = 21
./flockmain1:pid = 4760, seq = 22
./flockmain1:pid = 4760, seq = 23
./flockmain1:pid = 4760, seq = 24
./flockmain1:pid = 4760, seq = 25
./flockmain1:pid = 4760, seq = 26
./flockmain1:pid = 4760, seq = 27
./flockmain1:pid = 4760, seq = 28
./flockmain1:pid = 4760, seq = 29

为了解决上面的问题,必须对文件的内容进行加锁。

如何对文件内容加锁?

使用fcntl函数,它既可以锁整文件,也可以锁文件里的某段内容。通过结构体flock来指定要锁的范围。如果 whence = SEEK_SET;l_start = 0;l_len = 0;就是锁定整个文件。

struct flock {
...
short l_type; /* Type of lock: F_RDLCK,
F_WRLCK, F_UNLCK */
short l_whence; /* How to interpret l_start:
SEEK_SET, SEEK_CUR, SEEK_END */
off_t l_start; /* Starting offset for lock */
off_t l_len; /* Number of bytes to lock */
pid_t l_pid; /* PID of process blocking our lock
(set by F_GETLK and F_OFD_GETLK) */
...
};
  • F_SETLK:上锁。如果发现已经被别的进程上锁了,就直接返回-1,errno被设置成EACCES或者EAGAIN,不阻塞。
  • F_SETLKW:上锁。阻塞等待。
  • F_GETLK:得到锁的状态。

修改上面的函数my_lock,my_unlock。main函数不变。

例子2:

void my_lock(int fd){
struct flock lock;
lock.l_type = F_WRLCK;
wlock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0; fcntl(fd, F_SETLKW, lock);
} void my_unlock(int fd){
struct flock lock;
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0; fcntl(fd, F_SETLK, lock);
}

执行结果如下,发现数字不乱套了。

ubuntu$ ./flockmain & ./flockmain &
[1] 4882
[2] 4883
ubuntu$ ./flockmain:pid = 4883, seq = 1
./flockmain:pid = 4883, seq = 2
./flockmain:pid = 4883, seq = 3
./flockmain:pid = 4883, seq = 4
./flockmain:pid = 4883, seq = 5
./flockmain:pid = 4883, seq = 6
./flockmain:pid = 4883, seq = 7
./flockmain:pid = 4883, seq = 8
./flockmain:pid = 4883, seq = 9
./flockmain:pid = 4883, seq = 10
./flockmain:pid = 4883, seq = 11
./flockmain:pid = 4883, seq = 12
./flockmain:pid = 4883, seq = 13
./flockmain:pid = 4883, seq = 14
./flockmain:pid = 4883, seq = 15
./flockmain:pid = 4883, seq = 16
./flockmain:pid = 4883, seq = 17
./flockmain:pid = 4883, seq = 18
./flockmain:pid = 4883, seq = 19
./flockmain:pid = 4883, seq = 20
./flockmain:pid = 4882, seq = 21
./flockmain:pid = 4882, seq = 22
./flockmain:pid = 4882, seq = 23
./flockmain:pid = 4882, seq = 24
./flockmain:pid = 4882, seq = 25
./flockmain:pid = 4882, seq = 26
./flockmain:pid = 4882, seq = 27
./flockmain:pid = 4882, seq = 28
./flockmain:pid = 4882, seq = 29
./flockmain:pid = 4882, seq = 30
./flockmain:pid = 4882, seq = 31
./flockmain:pid = 4882, seq = 32
./flockmain:pid = 4882, seq = 33
./flockmain:pid = 4882, seq = 34
./flockmain:pid = 4882, seq = 35
./flockmain:pid = 4882, seq = 36
./flockmain:pid = 4882, seq = 37
./flockmain:pid = 4882, seq = 38
./flockmain:pid = 4882, seq = 39
./flockmain:pid = 4882, seq = 40

到此为止,貌似解决了问题,但是如果同时执行例子1和例子2,结果如下,发现还是乱的。

也就是说在协作线程(cooperating processes)间,文件锁(也叫劝告性上锁)也起作用的。但是不完全不相关的进程中,文件锁也不起作用的。如何解决呢?使用强制性上锁。

ys@ys-VirtualBox:~/IPC$ ./flockmain1 & ./flockmain &
[1] 3602
[2] 3603
ys@ys-VirtualBox:~/IPC$ ./flockmain1:pid = 3602, seq = 1
./flockmain:pid = 3603, seq = 1
./flockmain:pid = 3603, seq = 2
./flockmain:pid = 3603, seq = 3
./flockmain:pid = 3603, seq = 4
./flockmain:pid = 3603, seq = 5
./flockmain:pid = 3603, seq = 6
./flockmain:pid = 3603, seq = 7
./flockmain:pid = 3603, seq = 8
./flockmain:pid = 3603, seq = 9
./flockmain:pid = 3603, seq = 10
./flockmain1:pid = 3602, seq = 2
./flockmain1:pid = 3602, seq = 3
./flockmain1:pid = 3602, seq = 4
./flockmain:pid = 3603, seq = 11
./flockmain:pid = 3603, seq = 12
./flockmain1:pid = 3602, seq = 5
./flockmain:pid = 3603, seq = 13
./flockmain1:pid = 3602, seq = 6
./flockmain1:pid = 3602, seq = 7
./flockmain1:pid = 3602, seq = 8
./flockmain:pid = 3603, seq = 14
./flockmain:pid = 3603, seq = 15
./flockmain1:pid = 3602, seq = 9
./flockmain1:pid = 3602, seq = 10
./flockmain:pid = 3603, seq = 16
./flockmain:pid = 3603, seq = 17
./flockmain1:pid = 3602, seq = 11
./flockmain:pid = 3603, seq = 18
./flockmain1:pid = 3602, seq = 12
./flockmain1:pid = 3602, seq = 13
./flockmain1:pid = 3602, seq = 14
./flockmain:pid = 3603, seq = 19
./flockmain:pid = 3603, seq = 20
./flockmain1:pid = 3602, seq = 15
./flockmain1:pid = 3602, seq = 16
./flockmain1:pid = 3602, seq = 17
./flockmain1:pid = 3602, seq = 18
./flockmain1:pid = 3602, seq = 19
./flockmain1:pid = 3602, seq = 20

第一个问题:假如一个文件被一个进程以读的方式锁定,并有另一个进程在等待读锁定解锁后,用写入的方式锁定,这时是否允许另一个进程的还以读的方式取得锁定?

用例子3来观察:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> void gftime(char* buf){
struct timeval tv;
gettimeofday(&tv, NULL);
long usec = tv.tv_usec;
struct tm* tm = localtime(&tv.tv_sec);
sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec); } int main(){
char buff[100] = {0}; int fd = open("test.dat", O_RDWR | O_CREAT, 0664); struct flock lock; lock.l_type = F_RDLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
fcntl(fd, F_SETLK, &lock); gftime(buff);
printf("%s: parent has read lock\n", buff); //first child
if(fork() == 0){ char buf2[100] = {0};
sleep(1);
gftime(buf2);
printf("%s: first child tries to obtain write lock\n", buf2); struct flock lock2;
lock2.l_type = F_WRLCK;
lock2.l_whence = SEEK_SET;
lock2.l_start = 0;
lock2.l_len = 0;
fcntl(fd, F_SETLKW, &lock2); gftime(buf2);
printf("%s: first child obtains write lock\n", buf2); sleep(2); lock2.l_type = F_UNLCK;
lock2.l_whence = SEEK_SET;
lock2.l_start = 0;
lock2.l_len = 0;
fcntl(fd, F_SETLK, &lock2); gftime(buf2);
printf("%s: first child releases write lock\n", buf2); exit(0);
}
//secodn child
if(fork() == 0){
char buf1[100] = {0};
sleep(3);
gftime(buf1);
printf("%s: second child tries to obtain read lock\n", buf1); struct flock lock1;
lock1.l_type = F_RDLCK;
lock1.l_whence = SEEK_SET;
lock1.l_start = 0;
lock1.l_len = 0;
fcntl(fd, F_SETLKW, &lock1); gftime(buf1);
printf("%s: second child obtains read lock\n", buf1); sleep(4); lock1.l_type = F_UNLCK;
lock1.l_whence = SEEK_SET;
lock1.l_start = 0;
lock1.l_len = 0;
fcntl(fd, F_SETLK, &lock1); gftime(buf1);
printf("%s: second child release read lock\n", buf1); exit(0);
} //parent process
sleep(5); lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
fcntl(fd, F_SETLK, &lock); gftime(buff);
printf("%s: parent releases read lock\n", buff); wait(NULL);
wait(NULL); exit(0);
}

在ubuntu上执行结果:

17:49:44.348946: parent has read lock
17:49:45.350191: first child tries to obtain write lock
17:49:47.350155: second child tries to obtain read lock
17:49:47.350409: second child obtains read lock
17:49:49.349442: parent releases read lock
17:49:51.351197: second child release read lock
17:49:51.351582: first child obtains write lock
17:49:53.351689: first child releases write lock

第一个问题的答案:允许另一个进程的还以读的方式取得锁定

第二个问题:假如一个文件被一个进程以写的方式锁定,这时又有2个进程在等待这个锁的释放,其中一个进程是以写锁的方式等待,其中另一个进程是以读锁的方式等待,哪一个会优先取得锁?

用例子4来观察:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h> void gftime(char* buf){
struct timeval tv;
gettimeofday(&tv, NULL);
long usec = tv.tv_usec;
struct tm* tm = localtime(&tv.tv_sec);
sprintf(buf, "%d:%d:%d.%ld",tm->tm_hour, tm->tm_min, tm->tm_sec,usec); } int main(){
char buff[100] = {0}; int fd = open("test.dat", O_RDWR | O_CREAT, 0664); struct flock lock; lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
fcntl(fd, F_SETLK, &lock); gftime(buff);
printf("%s: parent has write lock\n", buff); //first child
if(fork() == 0){ char buf2[100] = {0};
sleep(1);
gftime(buf2);
printf("%s: first child tries to obtain write lock\n", buf2); struct flock lock2;
lock2.l_type = F_WRLCK;
lock2.l_whence = SEEK_SET;
lock2.l_start = 0;
lock2.l_len = 0;
fcntl(fd, F_SETLKW, &lock2); gftime(buf2);
printf("%s: first child obtains write lock\n", buf2); sleep(2); lock2.l_type = F_UNLCK;
lock2.l_whence = SEEK_SET;
lock2.l_start = 0;
lock2.l_len = 0;
fcntl(fd, F_SETLK, &lock2); gftime(buf2);
printf("%s: first child releases write lock\n", buf2); exit(0);
}
//secodn child
if(fork() == 0){
char buf1[100] = {0};
sleep(3);
gftime(buf1);
printf("%s: second child tries to obtain read lock\n", buf1); struct flock lock1;
lock1.l_type = F_RDLCK;
lock1.l_whence = SEEK_SET;
lock1.l_start = 0;
lock1.l_len = 0;
fcntl(fd, F_SETLKW, &lock1); gftime(buf1);
printf("%s: second child obtains read lock\n", buf1); sleep(4); lock1.l_type = F_UNLCK;
lock1.l_whence = SEEK_SET;
lock1.l_start = 0;
lock1.l_len = 0;
fcntl(fd, F_SETLK, &lock1); gftime(buf1);
printf("%s: second child release read lock\n", buf1); exit(0);
} //parent process
sleep(5); lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
fcntl(fd, F_SETLK, &lock); gftime(buff);
printf("%s: parent releases write lock\n", buff); wait(NULL);
wait(NULL); exit(0);
}

在ubuntu上执行结果:

17:49:29.796599: parent has write lock
17:49:30.797099: first child tries to obtain write lock
17:49:32.796885: second child tries to obtain read lock
17:49:34.796868: parent releases write lock
17:49:34.796987: second child obtains read lock
17:49:38.797148: second child release read lock
17:49:38.797297: first child obtains write lock
17:49:40.797727: first child releases write lock

第二个问题的答案:没有准确答案。在Ubuntu上的执行结果上看,读锁优先了,但是,可能在别的环境上又是写锁优先。按道理来说应该写锁优先吧?

c/c++ 学习互助QQ群:877684253

本人微信:xiaoshitou5854

Linux 读写锁的更多相关文章

  1. linux读写锁

    一.概述                                                    读写锁与互斥量的功能类似,对临界区的共享资源进行保护!互斥量一次只让一个线程进入临界区, ...

  2. linux 读写锁应用实例

    转自:http://blog.csdn.net/dsg333/article/details/22113489 /*使用读写锁实现四个线程读写一段程序的实例,共创建了四个新的线程,其中两个线程用来读取 ...

  3. Linux读写锁的使用

    读写锁是用来解决读者写者问题的,读操作可以共享,写操作是排它的,读可以有多个在读,写只有唯一个在写,写的时候不允许读. 具有强读者同步和强写者同步两种形式: 强读者同步:当写者没有进行写操作时,读者就 ...

  4. Linux的线程同步对象:互斥量Mutex,读写锁,条件变量

        进程是Linux资源分配的对象,Linux会为进程分配虚拟内存(4G)和文件句柄等 资源,是一个静态的概念.线程是CPU调度的对象,是一个动态的概念.一个进程之中至少包含有一个或者多个线程.这 ...

  5. linux中读写锁的rwlock介绍-nk_ysg-ChinaUnix博客

    linux中读写锁的rwlock介绍-nk_ysg-ChinaUnix博客 linux中读写锁的rwlock介绍 2013-02-26 13:59:35 分类: C/C++   http://yaro ...

  6. linux 内核的另一个自旋锁 - 读写锁

    除spinlock外,linux 内核还有一个自旋锁,名为arch_rwlock_t.它的头文件是qrwlock.h,包含在spinlock.h,头文件中对它全称为"Queue read/w ...

  7. linux线程间同步(1)读写锁

    读写锁比mutex有更高的适用性,能够多个线程同一时候占用读模式的读写锁.可是仅仅能一个线程占用写模式的读写锁. 1. 当读写锁是写加锁状态时,在这个锁被解锁之前,全部试图对这个锁加锁的线程都会被堵塞 ...

  8. Linux系统编程 —读写锁rwlock

    读写锁是另一种实现线程间同步的方式.与互斥量类似,但读写锁将操作分为读.写两种方式,可以多个线程同时占用读模式的读写锁,这样使得读写锁具有更高的并行性. 读写锁的特性为:写独占,读共享:写锁优先级高. ...

  9. linux kernel RCU 以及读写锁

    信号量有一个很明显的缺点,没有区分临界区的读写属性,读写锁允许多个线程进程并发的访问临界区,但是写访问只限于一个线程,在多处理器系统中允许多个读者访问共享资源,但是写者有排他性,读写锁的特性如下:允许 ...

随机推荐

  1. mysql从命令行执行sql语句

    mysql -u root -p -e "create database mydb;"

  2. C++学习七 C++实现add(1)(2)(3)

    一.代码实现: class Yoba { public: Yoba(int n) : _n(n) {} Yoba operator() (int n) { return Yoba(_n + n); } ...

  3. DRF的基本使用(一)

    本帖最后由 杰哥,我就服你 于 2018-12-20 13:22 编辑 Django rest framework(DRF) D:是一个用于构建Web API强大又灵活的框架,基于Django框架二次 ...

  4. 【Eureka篇三】Eureka常用配置说明(7)

    服务注册中心配置(Bean类:org.springframework.cloud.netflix.eureka.server.EurekaServerConfigBean) #关闭注册中心的保护机制, ...

  5. zz《可伸缩服务架构 框架与中间件》综合

    第1章 如何设计一款永不重复的高性能分布式发号器 1. 为什么不直接采用UUID? 虽然UUID能够保证唯一性,但无法满足业务系统需要的很多其他特性,比如时间粗略有序性.可反解和可制造性(说人话,就是 ...

  6. CF1225C p-binary

    CF1225C p-binary 洛谷评测传送门 题目描述 Vasya will fancy any number as long as it is an integer power of two. ...

  7. luoguP3292 [SCOI2016]幸运数字(点分治做法)

    题意 考虑点分治,每次处理过重心的询问(即两点在重心的不同子树中). 求出每个点到重心的线性基,之后对过重心的询问合并两点线性基求解. code: #include<bits/stdc++.h& ...

  8. QSS QPushButton:hover :pressed ...为状态下变更字体颜色(color)无效,变成字体粗细(font-weight)有效???

    //字体颜色变更无效 QPushButton:hover{ font-weight:bold; color:rgba(, , , ); } //字体颜色变更有效 QPushButton#pushBut ...

  9. 动手学深度学习14- pytorch Dropout 实现与原理

    方法 从零开始实现 定义模型参数 网络 评估函数 优化方法 定义损失函数 数据提取与训练评估 pytorch简洁实现 小结 针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的 ...

  10. Worker Services的新项目模板

    .NET Core3.0创建Worker Services2019-10-24 09:05  成天  阅读(1438)  评论(20)  编辑收藏 .NET CORE 3.0新增了Worker Ser ...