Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 
 
题解:给你M组u,v代表v是受u欢迎的,并且欢迎具有传递性;让你求最多有多少人是相互受欢迎的;
SCC + 缩点;强连通分量跑一边,然后缩点,就可转化为DAG图;然后记录每个 “ 点 ” 的出度;如果有超过一个,那么输出0即可;
如果为一个,则输出其所在点集的大小;
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
#define eps 1e-8
typedef pair<int,int> P;
const int maxn=5e4+;
int N,M,u[maxn],v[maxn],tot,times,blocks;
int head[maxn],dfn[maxn],lowv[maxn];
int ins[maxn],outd[maxn],belong[maxn],sz[maxn];
struct Node{
int v,nxt;
} edge[maxn];
stack<int> st;
void Init()
{
memset(head,-,sizeof head);
memset(dfn,,sizeof dfn);
memset(lowv,,sizeof lowv);
memset(ins,,sizeof ins);
memset(outd,,sizeof outd);
memset(sz,,sizeof sz);
memset(belong,,sizeof belong);
tot=times=blocks=;
while(!st.empty()) st.pop();
} void Addedge(int u,int v)
{
edge[tot].v=v;
edge[tot].nxt=head[u];
head[u]=tot++;
} void Tarjan(int u)
{
dfn[u]=lowv[u]=++times;
st.push(u);
ins[u]=;
for(int i=head[u];~i;i=edge[i].nxt)
{
int v=edge[i].v;
if(!dfn[v]) Tarjan(v),lowv[u]=min(lowv[u],lowv[v]);
else if(ins[v]) lowv[u]=min(lowv[u],dfn[v]);
} if(dfn[u]==lowv[u])
{
++blocks;
int v;
do
{
v=st.top(); st.pop();
belong[v]=blocks;
sz[blocks]++;
ins[v]=;
} while(u!=v);
} } int main()
{
ios::sync_with_stdio(false);
cin>>N>>M;
Init();
for(int i=;i<=M;i++)
{
cin>>u[i]>>v[i];
Addedge(u[i],v[i]);
}
int cnt=,flag;
for(int i=;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=;i<=M;i++) if(belong[u[i]]!=belong[v[i]]) outd[belong[u[i]]]++;
for(int i=;i<=blocks;i++) if(outd[i]==) cnt++,flag=i; if(cnt!=) cout<<<<endl;
else cout<<sz[flag]<<endl;
return ;
}

POJ 2186 Popular cows(SCC 缩点)的更多相关文章

  1. POJ 2186 Popular Cows tarjan缩点算法

    题意:给出一个有向图代表牛和牛喜欢的关系,且喜欢关系具有传递性,求出能被所有牛喜欢的牛的总数(除了它自己以外的牛,或者它很自恋). 思路:这个的难处在于这是一个有环的图,对此我们可以使用tarjan算 ...

  2. 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)

    poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...

  3. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  4. tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows

    缩点练习 洛谷 P3387 [模板]缩点 缩点 解题思路: 都说是模板了...先缩点把有环图转换成DAG 然后拓扑排序即可 #include <bits/stdc++.h> using n ...

  5. POJ 2186 Popular Cows (强联通)

    id=2186">http://poj.org/problem? id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 655 ...

  6. poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

    题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  7. poj 2186 Popular Cows【tarjan求scc个数&&缩点】【求一个图中可以到达其余所有任意点的点的个数】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27698   Accepted: 11148 De ...

  8. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  9. poj 2186 Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29908   Accepted: 12131 De ...

随机推荐

  1. solr 本地搭建

      1. 运行 D:\solr-4.7.2\example --> java -jar start.jar   2. 添加插件IK D:\solr-4.7.2\example\solr-weba ...

  2. 020.掌握Pod-Pod基础使用

    一 Pod定义详解 1.1 完整Pod定义文件 apiVersion: v1 #必选,版本号,例如v1,版本号必须可以用 kubectl api-versions 查询到 kind: Pod #必选, ...

  3. pat 1013 Battle Over Cities(25 分) (并查集)

    1013 Battle Over Cities(25 分) It is vitally important to have all the cities connected by highways i ...

  4. lqb 入门训练 A+B问题

    入门训练 A+B问题 时间限制:1.0s   内存限制:256.0MB     问题描述 输入A.B,输出A+B. 说明:在“问题描述”这部分,会给出试题的意思,以及所要求的目标. 输入格式 输入的第 ...

  5. Java开发者入职必备条件

    01.基础技术体系 我认为知识技能体系化是判断技术是否过关的第一步.知识体系化包含两层含义: 1. 能够知道技术知识图谱(高清版图谱扫文末二维码)的内容 比如分布式系统中常用的RPC技术,其背后就涉及 ...

  6. 领扣(LeetCode)二叉树的右视图 个人题解

    给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值. 示例: 输入: [1,2,3,null,5,null,4] 输出: [1, 3, 4] 解释: 1 < ...

  7. ubuntu 16.04源码编译OpenCV教程 | compile opencv on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/15f5c3e8/,欢迎阅读! compile opencv on ubuntu 16.04 Series Part 1: comp ...

  8. "PSP助手”微信小程序宣传视频链接及内容介绍

    此作业的要求参见[https://edu.cnblogs.com/campus/nenu/2019fall/homework/8677] 队名:扛把子组 组长:迟俊文 组员:刘信鹏 韩昊 宋晓丽 梁梦 ...

  9. js 根据指定的多个索引,删除相应的数组元素。splice + sort

    更新于2018-04-19 var productItems = ["a", "b", "c", "d"]; var i ...

  10. Nginx服务器部署 负载均衡 反向代理

    Nginx服务器部署负载均衡反向代理 LVS Nginx HAProxy的优缺点 三种负载均衡器的优缺点说明如下: LVS的优点: 1.抗负载能力强.工作在第4层仅作分发之用,没有流量的产生,这个特点 ...