Preface

军训终于结束了回来补一补之前的坑发现很多题目题意都忘记了

这场感觉难度适中,F由于智力不够所以弃了,E的话石乐志看了官方英文题解才发现自己已经胡了一大半就差实现了233

水平下降严重.jpg


A. Tokitsukaze and Discard Item

CNM我SB模拟题要WA那么多发还是退役算了万恶的long long

#include<cstdio>
#define RI register int
#define CI const int&
const int N=100005;
int m,ans; long long n,k,a[N],id,nw;
int main()
{
RI i,j; for (scanf("%I64d%d%I64d",&n,&m,&k),i=1;i<=m;++i)
scanf("%I64d",&a[i]); for (i=1;i<=m;)
for (id=(a[i]-(i-1)-1)/k+1,j=i+1;j<=m+1;++j)
if (j==m+1||(nw=(a[j]-(i-1)-1)/k+1)!=id) { ++ans; i=j; break; }
return printf("%d",ans),0;
}

B. Tokitsukaze, CSL and Stone Game

本来想和陈指导比一下看谁WA的多的,最后我以多一次的好成绩力压了他

这题比较繁琐,大体思路就是先判断第一个人是否必输,这个需要考虑各种情况,具体看代码

然后我们发现接下来每个数能被拿的数量数固定的,而且在着之上双方都有保证自己操作合法的方法,因此统计下能拿的数目的总数判断下奇偶性即可

#include<cstdio>
#include<map>
#define RI register int
#define CI const int&
using namespace std;
const int N=100005;
int n,a[N],num_mx,tot; map <int,int> ct; long long sum;
int main()
{
RI i; for (scanf("%d",&n),i=1;i<=n;++i)
{
scanf("%d",&a[i]);
if (++ct[a[i]]>num_mx) num_mx=ct[a[i]];
}
if (ct[0]>=2) return puts("cslnb"),0;
if (ct[0]&&ct[0]+ct[1]==n) return puts("cslnb"),0;
if (num_mx>=3) return puts("cslnb"),0;
for (map <int,int>::iterator it=ct.begin();it!=ct.end();++it)
if (it->second>=2) ++tot; if (tot>=2) return puts("cslnb"),0;
for (i=1;i<=n;++i) if (ct[a[i]]>=2&&ct[a[i]-1]) return puts("cslnb"),0;
/*bool flag=0; for (i=1;i<=n;++i) if (a[i]&&!ct[a[i]-1])
{ flag=1; break; } if (!flag) return puts("cslnb"),0;*/
for (i=1;i<=n;++i) sum+=a[i]-i+1; return puts(sum&1?"sjfnb":"cslnb"),0;
}

C. Tokitsukaze and Duel

又是坑提交的博弈题,发现我猜起结论来倒是挺NB的

首先判断第一个人能否一击必胜,否则它要么输掉要么平局(否则另一个人至少可以不断操作和它一样的区间来抵消影响)

那么接下来我们考虑枚举第一个人的所有操作情况,如果任一情况下没有导致必胜态出现就能打成平局,否则就是输掉(结合SG函数的定义理解一下)

那么我们到底需不需要枚举每一种情况呢,容易发现如果染中间的某一段一旦出现了非同色点在区间两边的情况就必然不可能输掉,因此只要判断染两个端点的即可

#include<cstdio>
#include<cstring>
#define RI register int
#define CI const int&
using namespace std;
const int N=100005;
int n,k,pfx[N],tp,all; char s[N],ts[N];
inline bool is_win(char *s,CI n)
{
RI i; for (all=0,i=1;i<=n;++i) pfx[i]=pfx[i-1]+s[i]-'0',all+=s[i]-'0';
for (i=1;i+k-1<=n;++i) if (tp=all-(pfx[i+k-1]-pfx[i-1]),!tp||tp==n-k)
return 1; return 0;
}
int main()
{
RI i; scanf("%d%d%s",&n,&k,s+1); if (is_win(s,n)) return puts("tokitsukaze"),0;
for (memcpy(ts,s,sizeof(s)),i=2;i<=k+1;++i) ts[i]='0';
if (!is_win(ts,n)) return puts("once again"),0;
for (memcpy(ts,s,sizeof(s)),i=2;i<=k+1;++i) ts[i]='1';
if (!is_win(ts,n)) return puts("once again"),0;
for (memcpy(ts,s,sizeof(s)),i=2;i<=k+1;++i) ts[n-i+1]='0';
if (!is_win(ts,n)) return puts("once again"),0;
for (memcpy(ts,s,sizeof(s)),i=2;i<=k+1;++i) ts[n-i+1]='1';
if (!is_win(ts,n)) return puts("once again"),0;
return puts("quailty"),0;
}

D. Tokitsukaze and Strange Rectangle

套路题,考虑每个点作为底边的贡献,这样我们就可以把点按\(y\)从大到小排序,然后一起考虑同一层

首先我们发现如果这一层只有一个点时,只要统计出所有不同的\(x\)坐标的种类数然后计算点对即可

那么多个点呢,考虑中间的点只会被两端重复计算,因此直接容斥减去中间的情况即可

离散化之后用树状数组维护点数目即可

#include<cstdio>
#include<vector>
#include<algorithm>
#define RI register int
#define CI const int&
using namespace std;
const int N=200005;
struct Point
{
int x,y;
friend inline bool operator < (const Point& A,const Point& B)
{
return A.y!=B.y?A.y>B.y:A.x<B.x;
}
}p[N]; int n,rst[N],num; long long ans;
inline long long S(CI x)
{
return 1LL*x*(x+1)>>1LL;
}
class Tree_Array
{
private:
int bit[N]; bool vis[N];
#define lowbit(x) x&-x
inline int get(RI x,int ret=0)
{
for (;x;x-=lowbit(x)) ret+=bit[x]; return ret;
}
public:
inline void add(RI x)
{
if (vis[x]) return; for (vis[x]=1;x<=num;x+=lowbit(x)) ++bit[x];
}
inline int query(CI l,CI r)
{
if (l>r) return 0; return get(r)-get(l-1);
}
#undef lowbit
}BIT;
int main()
{
RI i,j,k; for (scanf("%d",&n),i=1;i<=n;++i)
scanf("%d%d",&p[i].x,&p[i].y),rst[i]=p[i].x;
sort(rst+1,rst+n+1); num=unique(rst+1,rst+n+1)-rst-1;
for (i=1;i<=n;++i) p[i].x=lower_bound(rst+1,rst+num+1,p[i].x)-rst;
for (sort(p+1,p+n+1),p[n+1].x=num,p[n+1].y=1e9+1,i=1;i<=n;i=j+1)
{
for (j=i;p[j].y==p[j+1].y;++j);
for (k=i;k<=j;++k) BIT.add(p[k].x); ans+=S(BIT.query(1,num));
for (k=i+1;k<=j;++k) ans-=S(BIT.query(p[k-1].x+1,p[k].x-1));
ans-=S(BIT.query(1,p[i].x-1)); ans-=S(BIT.query(p[j].x+1,num));
}
return printf("%I64d",ans),0;
}

E. Tokitsukaze and Explosion

看到这题之后就随便口胡了一个做法,然后就基本正解了?

首先我们转化问题,考虑以原点为圆心做一个半径为\(d\)的圆,那么所有直线不能与圆相交

显然半径\(d\)可以二分,再考虑已知半径的时候直线必然与圆相切,因为不相切的直线向圆心平移显然不会更劣

然后我们就可以得出一条直线所能覆盖的一个极角范围了,因此原问题转化为能否用\(m\)条线段覆盖环上的\(n\)个点

考虑破环为链,我们枚举起点之后看看贪心地向后覆盖\(m\)条线段后能否绕回这个点

但是直接这么做显然时\(O(n^2)\)的,然后稍微一想就会发现可以倍增处理出每个点向后跳\(2^i\)后最远能到达的点,然后再枚举起点就可以了

复杂度\(O(n\log^2 n)\),可以轻松地跑过

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#define RI register int
#define CI const int&
using namespace std;
typedef double DB;
const int N=100005,P=20,INF=2e9;
const DB EPS=1e-10,tpi=2.0*acos(-1);
struct segment
{
DB l,r; int tp;
inline segment(const DB& X=0,const DB& Y=0,CI Tp=0)
{
l=X; r=Y; tp=Tp;
}
friend inline bool operator < (const segment& A,const segment& B)
{
return A.tp!=B.tp?A.tp<B.tp:A.l<B.l;
}
}sg[N<<1]; int n,m,tot,x[N],y[N],nxt[N<<1][P];
DB dis[N],mi=INF,ans; bool c[N<<1];
inline bool check(const DB& lim)
{
RI i,j; for (tot=0,i=1;i<=n;++i)
{
DB deg=atan2(y[i],x[i]),rg=acos(lim/dis[i]);
sg[++tot]=segment(deg-rg,deg+rg,0);
sg[++tot]=segment(deg-rg+tpi,deg+rg+tpi,1);
}
DB mr=INF; memset(c,1,tot+1);
for (sort(sg+1,sg+tot+1),i=tot;i;--i)
if (sg[i].r<mr) mr=sg[i].r; else c[i]=0;
for (tot=0,i=1;i<=n;++i) if (c[i]) sg[++tot]=sg[i];
for (i=1;i<=tot;++i) sg[tot+i]=segment(sg[i].l+tpi,sg[i].r+tpi,1);
for (tot<<=1,i=j=1;i<=tot;++i)
{
while (j<=tot&&sg[i].r>=sg[j].l) ++j;
nxt[i][0]=j;
}
for (j=1;j<P;++j) for (i=1;i<=tot;++i)
nxt[i][j]=nxt[nxt[i][j-1]][j-1];
for (i=1;(i<<1)<=tot;++i)
{
int p=i; for (j=0;j<P;++j) if ((m>>j)&1) p=nxt[p][j];
if (!p||p>=i+(tot>>1)) return 1;
}
return 0;
}
int main()
{
RI i; for (scanf("%d%d",&n,&m),i=1;i<=n;++i)
scanf("%d%d",&x[i],&y[i]),dis[i]=sqrt(1LL*x[i]*x[i]+1LL*y[i]*y[i]),mi=min(mi,dis[i]);
DB l=0,r=mi,mid; while (r-l>EPS)
if (check(mid=(l+r)/2.0)) ans=mid,l=mid; else r=mid;
return printf("%.10lf",ans),0;
}

F. Tokitsukaze and Powers

题意都那么麻烦就咕咕咕了


Postscript

一场比赛前几题都是博弈,这对于我来说就是罚时起飞的节奏

看来我还是适合做套路题233

Codeforces Round #573 (Div. 1)的更多相关文章

  1. Codeforces Round #573 (Div. 1) 差F

    Codeforces Round #573 (Div. 1) E 题意:二维平面上有 n 个点,你可以放至多 m 条直线使得 (0,0) 与每个点的连线至少与一条直线相交.求原点与所有直线的距离最小值 ...

  2. Codeforces Round 573 (Div.1) 题解

    这场怎么说呢……有喜有悲吧. 开场先秒了 A.看到 B,感觉有点意思,WA 了 2 发后也过了. 此时还在 rk 前 200. 开 C,一看就不可做.跟榜,切 D 人数是 C 的两倍. 开 D.一眼感 ...

  3. Codeforces Round #573 (Div. 2) Tokitsukaze and Mahjong 水题

    B. Tokitsukaze and Mahjong time limit per test1 second memory limit per test256 megabytes Tokitsukaz ...

  4. Codeforces Round #573 (Div. 2) D. Tokitsukaze, CSL and Stone Game (博弈,思维)

    D. Tokitsukaze, CSL and Stone Game time limit per test1 second memory limit per test256 megabytes in ...

  5. Codeforces Round #573 (Div. 2) E. Tokitsukaze and Duel (博弈)

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  6. Codeforces Round #573 (Div. 2)

    A:Tokitsukaze and Enhancement 当时看错条件了..以为A>C>B>D.就胡写了判断条件. #include<bits/stdc++.h> us ...

  7. Codeforces Round #573 (Div. 2) D题题解

    一.题目 ​ Tokitsukaze, CSL and Stone Game ​ Tokitsukaze和CSL正在玩一些石头游戏. ​ 一开始,有n堆的石头,第i堆石头数记为 \(a_i\),两人轮 ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. 【51nod1253】Kundu and Tree(容斥+并查集)

    点此看题面 大致题意: 给你一棵树,每条边为黑色或红色, 求有多少个三元组\((x,y,z)\),使得路径\((x,y),(x,z),(y,z)\)上都存在至少一条红色边. 容斥 我们可以借助容斥思想 ...

  2. SQLite安装及使用教程

    SQLite是一款轻型的嵌入式关系数据库,轻量级,效率高,操作起来也特别方便 我们今天来讲解一下SQLite的安装和一些基本操作 SQLite下载 如果是64位机,下载下面的两个解压就好 在dos界面 ...

  3. 开发SSO单点登录需要注意的问题

      一.单点登录系统开发需要注意的问题     1.单点登录系统需要支持jsonp请求?    单点登录系统主要是向其他系统提供用户身份验证服务,因此需要提供对外接口,而外部系统通过接口访问时,必然涉 ...

  4. Bootstrap --------- 了解与使用

    Bootstrap是用来做什么的?有几大部分?谁开发的?有什么特点? 一个用于快速开发 Web 应用程序和网站的前端框架. 基于 HTML.CSS.JAVASCRIPT 的. 2011 年八月在 Gi ...

  5. mysql Hash索引和BTree索引区别

    Hash仅支持=.>.>=.<.<=.between.BTree可以支持like模糊查询 索引是帮助mysql获取数据的数据结构.最常见的索引是Btree索引和Hash索引. ...

  6. Zabbix 数据清理

    目录 Zabbix 数据清理的一系列操作 一.问题 二.解决办法 Zabbix 数据清理的一系列操作 基本信息: Zabbix 版本 4.0.9 MySQL 版本 5.5 一.问题 我们将 Zabbi ...

  7. 在RPA中使用Python批量生成指定尺寸的缩略图!比Ps好用!

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 htt ...

  8. 阿里云CDN接入踩坑记录

    最近负责的系统安全要求接入CDN,避免DDOS之类攻击,然后华丽丽踩了两个大坑.回顾问题原因后,发现还是相关人员都对CDN原理不够熟悉.了解导致. 坑一:默认支持的文件上传最大是300M 问题现象: ...

  9. 版本管理·玩转git(分支管理)

    在开发中,遇到这样的情况怎么办? 网站已有支付宝在线支付功能,要添加"微信支付",修改了两个文件,wechat.php.pay.php. 刚做到一半,突然有个紧急bug:支付宝支付 ...

  10. vue组件懒加载

    vue2组件懒加载浅析 一. 什么是懒加载 懒加载也叫延迟加载,即在需要的时候进行加载,随用随载. 二.为什么需要懒加载 在单页应用中,如果没有应用懒加载,运用webpack打包后的文件将会异常的大, ...