话说这题放在智推里好久了的说,再不写掉对不起自己233

首先你要知道一个叫做阶梯Nim的东西,具体的可以看这篇博客

那么我们发现这和这道题的关系就很明显了,我们把两个金币之间的距离看作阶梯Nim的每一堆的石子个数

考虑阶梯Nim的结论:奇数编号堆的石子异或和为\(0\),发现我们可以搞一个很暴力的DP出来

\(f_{i,j,k}\)表示当前放了前\(i\)堆石子,总共用了石子个数是\(j\),其中奇数堆石子的异或和为\(k\)的方案数,转移的时候直接枚举当前堆拿了几个即可,复杂度\(O(n^3\times m)\),显然无法通过此题

我们再来冷静一下,发现限制的条件是异或,那么果断想到从二进制的角度出发

先容斥一下,令\(f_{i,j}\)表示做了前\(i\)位的,奇数堆和为\(j\)且异或和为\(0\)的方案数,最后用隔板法综合偶数堆的情况然后用\(C_n^m\)减去即可

然后DP就很好转移了,我们从高到低枚举二进制位,然后枚举奇数堆的和,剩下枚举这一位是\(1\)的奇数堆的个数(显然必须为偶数),然后转移的时候乘上组合数即可

复杂度\(O(nm\times \log n)\),足以通过本题的数据范围。当然提一下这题还有利用进位角度考虑然后再用MTT优化的\(O(m\log m\log n)\)的优秀做法因此是可以出一个加强版的233

#include<cstdio>
#define RI register int
#define CI const int&
using namespace std;
const int N=200005,R=20,mod=1e9+9;
int n,m,f[R][N],odd,even,num,ret,fact[N],inv[N];
inline void inc(int& x,CI y)
{
if ((x+=y)>=mod) x-=mod;
}
inline int sub(CI x,CI y)
{
int t=x-y; return t<0?t+mod:t;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline void init(CI n)
{
RI i; for (fact[0]=i=1;i<=n;++i) fact[i]=1LL*fact[i-1]*i%mod;
for (inv[n]=quick_pow(fact[n]),i=n-1;~i;--i) inv[i]=1LL*inv[i+1]*(i+1)%mod;
}
inline int C(CI n,CI m)
{
return 1LL*fact[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
RI i,j,k; scanf("%d%d",&n,&m); init(n+m);
for (odd=m+1>>1,even=m+1-odd,num=n-m,f[R-1][num]=1,i=R-2;~i;--i)
for (j=0;j<=num;++j) for (k=0;j+(1<<i)*k<=num&&k<=odd;k+=2)
inc(f[i][j],1LL*f[i+1][j+(1<<i)*k]*C(odd,k)%mod);
for (i=0;i<=num;++i) inc(ret,1LL*f[0][i]*C(i+even-1,even-1)%mod);
return printf("%d",sub(C(n,m),ret)),0;
}

Luogu P5363 [SDOI2019]移动金币的更多相关文章

  1. luogu P3878 [TJOI2010]分金币

    [返回模拟退火略解] 题目描述 今有 nnn 个数 {ai}\{a_i\}{ai​},把它们分成两堆{X},{Y}\{X\},\{Y\}{X},{Y},求一种分配使得∣∑i∈Xai−∑i∈Yai∣|\ ...

  2. 【洛谷5363】[SDOI2019] 移动金币(动态规划)

    点此看题面 大致题意: 有\(n\)个格子,让你摆放\(m\)个金币.二人博弈,每次选择一个金币向左移任意格,无法移动者输.问有多少种方案使先手必胜. 阶梯\(Nim\) 阶梯\(Nim\)的基本模型 ...

  3. # [SDOI2019]移动金币 阶梯博弈 dp

    [SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...

  4. luogu P5358 [SDOI2019]快速查询【模拟(?)】

    把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...

  5. [SDOI2019] 移动金币

    分析 阶梯NIM模型:共有m+1堆石子,石子总数不超过n-m,求必胜的,即奇数堆石子数目异或和非零的局面数.补集转化,答案C(n,m)-奇数堆石子数目异或和位0的局面数. 可以想到按位dp,设f[i, ...

  6. 【题解】Luogu P5358 [SDOI2019]快速查询

    原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...

  7. 【题解】Luogu P5360 [SDOI2019]世界地图

    原题传送门 每次查询的实际就是将地图的一个前缀和一个后缀合并后的图的最小生成树边权和 我们要预处理每个前缀和后缀的最小生成树 实际求前缀和(后缀和)的过程珂以理解为上一个前缀和这一列的最小生成树进行合 ...

  8. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  9. Luogu5363 SDOI2019移动金币(博弈+动态规划)

    容易想到可以转化为一个有m堆石子,石子总数不超过n-m的阶梯博弈.阶梯博弈的结论是相当于只考虑奇数层石子的nim游戏. nim和不为0不好算,于是用总方案数减掉nim和为0的方案数.然后考虑dp,按位 ...

随机推荐

  1. 图书分享 -《Natural Language Processing with Python》

    -<Natural Language Processing with Python> 链接:https://pan.baidu.com/s/1_oalRiUEw6bXbm2dy5q_0Q ...

  2. js 根据url 下载图片 前端js 实现文件下载

    1.H5 download属性 function downFile(content, filename) { // 创建隐藏的可下载链接 var eleLink = document.createEl ...

  3. jQuery 源码分析(十六) 事件系统模块 底层方法 详解

    jQuery事件系统并没有将事件监听函数直接绑定到DOM元素上,而是基于数据缓存模块来管理监听函数的,事件模块代码有点多,我把它分为了三个部分:分底层方法.实例方法和便捷方法.ready事件来讲,好理 ...

  4. Drools规则引擎-如果Fact对象参数为null如何处理

    问题场景 在技术交流群(QQ:715840230)中有同学提出这样的问题: 往kiesession里面传入fact,如果不做输入检查fact里面有些字段可能是null值.但是如果在外面做输入检查,规则 ...

  5. java高并发系列 - 第2天:并发级别

    由于临界区的存在,多线程之间的并发必须受到控制.根据控制并发的策略,我们可以把并发的级别分为阻塞.无饥饿.无障碍.无锁.无等待几种. 阻塞 一个线程是阻塞的,那么在其他线程释放资源之前,当前线程无法继 ...

  6. MySQL GROUP BY 的问题

    拿 employee 示例数据库为例,当进行如下操作时会报错. mysql> SELECT * FROM employees GROUP BY gender; ERROR 1055 (42000 ...

  7. Gallery -- 横向不断滚动 demo

    <%@ Page Language="C#" AutoEventWireup="true" %> <!DOCTYPE html> < ...

  8. MySQL,必须掌握的6个知识点

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...

  9. MySQL学习——操作表

    MySQL学习——操作表 摘要:本文主要学习了使用DDL语句操作表的方法. 创建表 语法 create table 表名 [表定义选项] [表选项]; 表定义选项 用来创建定义表的结构,由列名(col ...

  10. JVM中优化指南

    JVM中优化指南 如何将新对象预留在年轻代 如何让大对象进入年老代 如何设置对象进入年老代的年龄 稳定的 Java 堆 VS 动荡的 Java 堆 增大吞吐量提升系统性能 尝试使用大的内存分页 使用非 ...