点此看题面

大致题意: 让你把一个长度为\(n\)的序列划分成\(m\)块,求每块数总和的最小方差乘\(m^2\)的值。

转化方差

首先方差显然是一个比较复杂的东西,需要进行一定转化。

设\(p_i\)为第\(i\)块数总和;\(s_i\)为原序列的前缀和,即\(s_i=\sum_{i=1}^ia_i\);\(\bar p\)为\(p_i\)的平均值,即\(\bar{p}=\frac{\sum_{i=1}^mp_i}m=\frac{s_n}m\)。

然后推式子:

\[m^2*\frac{\sum_{i=1}^m(p_i-\bar{p})^2}m=m\sum_{i=1}^m(p_i^2-2p_i\bar{p}+\bar{p}^2)=m\sum_{i=1}^mp_i^2-2m\bar{p}\sum_{i=1}^mp_i+m^2\bar{p}^2
\]

其中\(\sum_{i=1}^mp_i\)显然就是\(s_n\),同时我们把\(\bar{p}\)的值代入得到:

\[m\sum_{i=1}^mp_i^2-2s_n^2+s_n^2=m\sum_{i=1}^mp_i^2-s_n^2
\]

动态规划

考虑上面这个式子,其中\(m,s_n^2\)都是常数,因此我们只需要最小化\(p_i\)平方和。

可以考虑动态规划

设\(f_{i,j}\)表示当前第\(i\)位,已划分出\(j\)块时的\(p_i\)平方和的最小值。

显然暴力转移只需枚举一个转移点:

\[f_{i,j}=\min_{x=1}^{i-1}(f_{x,j-1}+(s_i-s_x)^2)
\]

这就是\(O(n^3)\)的做法了。

斜率优化

显然上面的\(DP\)还不够优,需要优化。

这里我们考虑斜率优化。

设当前为\(i\),比较对于\(a\)和\(b\)两个转移点,若我们选择\(a\)进行转移,则需要满足:

\[f_{a,j-1}+(s_i-s_a)^2<f_{b,j-1}+(s_i-s_b)^2
\]

拆平方并移项:

\[2s_i(s_b-s_a)<(f_{b,j-1}+s_b^2)-(f_{a,j-1}+s_a^2)
\]

两边同除以\(s_b-s_a\)得:

\[2s_i<\frac{(f_{b,j-1}+s_b^2)-(f_{a,j-1}+s_a^2)}{s_b-s_a}
\]

设\(A(x)=s_x,B(x)=f_{x,j-1}+s_x^2\),则上面的式子就相当于:

\[2s_i<\frac{B(b)-B(a)}{A(b)-A(a)}
\]

这是一个斜率的形式。

那么我们就可以开一个单调队列维护一个斜率逐渐上升的序列。

然后每次转移之前,将队首斜率小于\(2s_i\)的几项弹掉再转移即可。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 3000
#define INF 1e9
using namespace std;
int n,m,a[N+5],s[N+5],q[N+5],f[N+5][N+5];
int main()
{
RI i,j,H,T;for(scanf("%d%d",&n,&m),i=1;i<=n;++i) scanf("%d",a+i),s[i]=s[i-1]+a[i];//读入+初始化前缀和
#define A(x) (s[x])
#define B(x) (f[x][j-1]+s[x]*s[x])
#define S(x,y) (1.0*(B(y)-B(x))/(A(y)-A(x)))
#define Slope (2.0*s[i])
for(i=1;i<=n;++i) f[i][0]=INF;//初始化
for(j=1;j<=m;++j) for(q[H=T=1]=0,i=1;i<=n;++i)//注意要先枚j
{
W(H<T&&Slope>=S(q[H],q[H+1])) ++H;//弹掉不合法队首
f[i][j]=f[q[H]][j-1]+(s[i]-s[q[H]])*(s[i]-s[q[H]]);//转移
W(H<T&&S(q[T-1],q[T])>=S(q[T-1],i)) --T;q[++T]=i;//保证单调递增,放入队尾
}return printf("%lld",1LL*m*f[n][m]-1LL*s[n]*s[n]),0;//输出答案
}

【BZOJ4518】[SDOI2016] 征途(重拾斜率优化DP)的更多相关文章

  1. [luogu4072][bzoj4518][SDOI2016]征途【动态规划+斜率优化】

    题目分析 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  2. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  3. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  4. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

  5. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  6. [SDOI2015][bzoj4518] 征途 [斜率优化dp]

    题面 传送门 思路 把$vm^2$展开化一下式子,可以得到这样的等价公式: $vm^2=m\sum_{i=1}^m a_i^2-\sum_{i=1}^m a_i$ 那么我们要最小化的就是$\sum_{ ...

  7. 斜率优化dp练习

    1.HDU3507 裸题,有助于理解斜率优化的精髓. dp[i]=min(dp[j]+m+(sum[i]-sum[j])2) 很显然不是单调队列. 根据斜率优化的的定义,就是先设两个决策j,k 什么时 ...

  8. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  9. 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)

    题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...

随机推荐

  1. IT人的立功,立言,立德三不朽

    最近几个月很忙,忙着当奶爸,忙着做加班狗,忙着补裤裆学技术……以至于快忘了要思考人生了! 古人立志穷极一生追求“立德”,“立功”,“立言”,以求不朽,为万世所景仰,为后人所传颂,实现人生的意义.立德者 ...

  2. WPF 绑定属性 XAML 时间格式化

    原文:WPF 绑定属性 XAML 时间格式化 XAML 时间格式化{Binding Birthday,StringFormat='yyyy-MM-dd '} public class AssetCla ...

  3. 小程序-引用的两种方式:import和include

    import import可以在该文件中使用目标文件定义的template,如: 在mine.wxml中定义了一个叫item的template: <template name="ite ...

  4. golang数据结构之双链表

    目录结构: doubleLink.go package link import ( "fmt" ) //HerosNode 链表节点 type HerosNode struct { ...

  5. openpyxl常用API

    worksheet.cell(self, row, column, value=None)描述:给指定位置的单元格赋值参数: row&column:必须参数,单元格的坐标 value:可选参数 ...

  6. C# windows服务,解决应用程序开机自启问题

    最近在东营做一个超市购物的项目,业务体量很小,是仅供内部员工使用的内网应用程序,其中涉及一个商品数据同步的winform应用程序,有一个问题就是服务器重启后,必须登录服务器操作系统,手动启动才行,于是 ...

  7. Jenkins 有关 Maven 的内容

    Jenkins Maven 插件安装 在安装完 Jenkins 后,我们想添加新的项目 为 Maven 项目时,发现找不到这个选项. 原因是我们没有安装插件 Maven Integration. 在 ...

  8. jackson json转实体对象 com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException

    Jackson反序列化错误:com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException: Unrecognized field的解 ...

  9. python基础(12):函数(二)

    1. 函数参数 之前我们说过了传参,如果我们需要给⼀个函数传参,⽽参数⼜是不确定的,或者我给⼀个函数传很多参数,我的形参就要写很多,很⿇烦,怎么办呢,我们可以考虑使⽤动态参数. 形参的第三种: 动态参 ...

  10. 用 Python 监控知乎和微博的热门话题

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: TED Crossin的编程教室 PS:如有需要Python学习资料 ...