在本文中,我们将看到一种使用Python和开放源码库开始人脸识别的非常简单的方法。

OpenCV

OpenCV是最流行的计算机视觉库。最初是用C/C++编写的,现在它提供了Python的API。

OpenCV使用机器学习算法来搜索图片中的面孔。因为脸是如此复杂,没有一个简单的测试可以告诉你它是否找到了一张脸。相反,有成千上万的小模式和特征必须匹配。这些算法将识别人脸的任务分解为数千个较小的、适合大小的任务,每个任务都很容易解决。这些任务也称为分类器.

对于脸像这样的东西,可能有6000个或更多的分类器,所有这些都必须匹配才能检测到人脸(当然,在错误限制范围内)。但问题就在这里:对于人脸检测,算法从图片的左上角开始,向下移动到小块数据中,查看每个块,不断地问:“这是一张脸吗?…这是张脸吗?…这是张脸吗?“由于每个块有6000或更多的测试,您可能需要进行数百万的计算,这将使您的计算机陷入瘫痪。

为了避免这种情况,OpenCV使用级联。

就像一系列瀑布一样,OpenCV级联将人脸检测问题分解为多个阶段。对于每个块,它做了一个非常粗糙和快速的测试。如果通过,它会进行稍微详细的测试,依此类推。该算法可能有30到50个这样的阶段或级联,只有当所有阶段都通过时,它才能检测到一张脸。

它的优点是,大多数图片在最初的几个阶段会返回一个负值,这意味着算法不会浪费时间来测试它上的所有6000个特性。现在可以实时进行人脸检测,不用花上几个小时。

实践中的级联

虽然这个理论听起来很复杂,但在实践中却相当容易。级联本身只是一堆XML文件,其中包含用于检测对象的OpenCV数据。你用你想要的级联初始化你的代码,然后它为你做工作。

由于人脸检测是如此常见的情况,OpenCV附带了许多内置的级联,用于检测从脸到眼睛、手到腿的所有东西。对于非人类的事物,甚至还有级联。例如,如果你经营一家香蕉店,想追踪偷香蕉的人,为此造了一个!

安装OpenCV

首先,您需要找到正确的安装文件你的操作系统.

我发现安装OpenCV是这项任务中最困难的部分。如果出现奇怪的无法解释的错误,可能是由于库冲突、32/64位差异等原因造成的。我发现只使用Linux虚拟机并从头安装OpenCV是最简单的。

安装完成后,可以通过触发Python会话并键入:

>>> import cv2>>>

>>>

如果你没有任何错误,你可以继续下一部分。

理解方法

让我们来分析一下实际的代码,可以从这网站https://github.com/shantnu/FaceDetect/下载这些代码。获取face_detect.py脚本、abba.png pic和haarcascade_frontalface_default.xml

# Get user supplied valuesimagePath = sys.argv[1]cascPath = sys.argv[2]

首先将图像和串级名称作为命令行参数传递。我们将使用ABBA图像以及默认级联来检测OpenCV提供的面孔。

# Create the haar cascadefaceCascade = cv2.CascadeClassifier(cascPath)

现在我们创建这个级联并用我们的脸级联初始化它。这会将脸级联加载到内存中,这样就可以使用了。记住,级联只是一个XML文件,它包含用于检测面孔的数据。

# Read the imageimage = cv2.imread(imagePath)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

在这里,我们读取图像并将其转换为灰度。OpenCV中的许多操作都是以灰度形式完成的。

# Detect faces in the imagefaces = faceCascade.detectMultiScale(    gray,    scaleFactor=1.1,    minNeighbors=5,    minSize=(30, 30),    flags = cv2.cv.CV_HAAR_SCALE_IMAGE)

这个函数检测实际的外观,是代码的关键部分,所以让我们来看看下面的选项:

  1. 这个detectMultiScale功能是一个检测对象的通用函数。因为我们叫它在面部级联,这就是它检测到的。

  2. 第一个选项是灰度图像。

  3. 第二个是scaleFactor...因为有些脸可能离摄像机更近,所以看起来比后面的脸要大。比例因子对此进行补偿。

  4. 该检测算法使用移动窗口检测物体。minNeighbors定义在当前对象声明找到的脸之前,在当前对象附近检测到多少个对象。minSize同时,给出每个窗口的大小。

注:我取了这些字段常用的值。在现实生活中,您将尝试不同的窗口大小、比例因子等值,直到找到最适合您的值为止。

该函数返回一个矩形列表,其中它认为它找到了一张脸。接下来,我们将循环到它认为它发现了什么东西的地方。

print "Found {0} faces!".format(len(faces))
# Draw a rectangle around the facesfor (x, y, w, h) in faces:    cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)

此函数返回4个值:xy矩形的位置,以及矩形的宽度和高度(w , h).

使用这些值绘制一个矩形。rectangle()功能。

​​​​​​​

cv2.imshow("Faces found", image)cv2.waitKey(0)

最后,我们显示图像,等待用户按下键。

检查结果

让我们根据ABBA的照片进行测试:

$ python face_detect.py abba.png haarcascade_frontalface_default.xml

这起作用了。再来一张照片怎么样:

那个…不是一张脸。我们再试一次。我更改了参数,发现设置scaleFactor把错误的脸去掉了。

What?

第一张照片是用高质量的相机拍的。第二个似乎是从远处拿来的,可能是用手机拍的。这就是为什么scaleFactor必须修改。正如我说过的,你必须在逐个案例的基础上设置算法,以避免误报。

但是,请注意,由于这是基于机器学习,结果永远不会是100%的准确性。在大多数情况下,您将获得足够好的结果,但有时算法会将不正确的对象识别为Faces。

最后的代码可以找到。https://github.com/shantnu/FaceDetect

用Python在25行以下代码实现人脸识别的更多相关文章

  1. 手把手教你用1行代码实现人脸识别 --Python Face_recognition

    环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 ...

  2. 用 20 行 python 代码实现人脸识别!

    点击上方"Python编程与实战",选择"置顶公众号" 第一时间获取 Python 技术干货! 阅读文本大概需要 11分钟. 今天给大家介绍一个世界上最简洁的人 ...

  3. 简单机器学习人脸识别工具face-recognition python小试,一行代码实现人脸识别

    摘要: 1行代码实现人脸识别,1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片.其中每个人一张图片,图片以人的名字命名.2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片.3 ...

  4. 25 行 Python 代码实现人脸识别——OpenCV 技术教程

    OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是 ...

  5. Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!

    Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...

  6. [转]7行Python代码的人脸识别

    https://blog.csdn.net/wireless_com/article/details/64120516 随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域 ...

  7. 7行Python代码的人脸识别

    随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的A ...

  8. 用Python20行代码实现人脸识别

    OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python.注意:很多人学Python过程中会遇到各种烦恼问题,没有人帮答疑.为此小编建了个Python全栈免费答疑交 ...

  9. Python 3 利用 Dlib 19.7 实现人脸识别和剪切

    0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次 ...

随机推荐

  1. 【Android - 组件】之Activity的启动模式

    Activity的启动模式目前有四种:standard.singleTop.singleTask 和 singleInstance. 1.standard standard 是标准模式,也是系统的默认 ...

  2. 如何提高 PHP 代码的质量?第二部分 单元测试

    在“如何提高 PHP 代码的质量?”的前一部分中:我们设置了一些自动化工具来自动检查我们的代码.这很有帮助,但关于我们的代码如何满足业务需求并没有给我们留下任何印象.我们现在需要创建特定代码域的测试. ...

  3. Apache用户认证、域名跳转、Apache访问日志

    5月29日任务 课程内容: 11.18 Apache用户认证11.19/11.20 域名跳转11.21 Apache访问日志扩展 apache虚拟主机开启php的短标签 http://ask.apel ...

  4. 本地搭建的gitbook添加导航折叠插件

    如果有多个目录,Gitbook在浏览器上打开时,默认所有的目录都会打开,当目录比较多时,全部显示不利于阅读. 可以使用插件配置目录折叠,使得打开浏览器时这些目录默认是关闭的. 在执行gitbook i ...

  5. js点击历史记录

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. 【nodejs原理&源码赏析(7)】【译】Node.js中的事件循环,定时器和process.nextTick

    [摘要] 官网博文翻译,nodejs中的定时器 示例代码托管在:http://www.github.com/dashnowords/blogs 原文地址:https://nodejs.org/en/d ...

  7. 【云速建站】微信公众平台中维护IP白名单

    [摘要] 介绍获取接入IP白名单的操作步骤 网站后台对接微信公众号.支付等都依赖于白名单,接下来就介绍一下白名单的配置. 1.1      为什么要设置白名单 为了提高公众平台开发者接口调用的安全性, ...

  8. 阿里巴巴主导的“华山版《Java 开发手册》”简介

    1."83行代码计划"项目介绍(转自github): 2018年9月22日,在2018杭州云栖大会上,召开<码出高效:Java 开发手册>新书发布会,并宣布将图书所有收 ...

  9. django学习02-模型的使用

    新手做的笔记,很可能会有理解错误的地方.欢迎拍砖. mysite/settings.py的INSTALLED_APPS选项中定义了几个默认的app,又如django.contrib.admin,dja ...

  10. 笔记||Python3之字符串格式化输出

    字符串的格式化输出方法一: 常用的字符串格式化符号:%s   ---   用str()函数进行字符串转换 %d   ---   转成有符号十进制数 %f    ---   转成浮点数(小数部分自然截断 ...