提交任务到spark(以wordcount为例)
1、首先需要搭建好hadoop+spark环境,并保证服务正常。本文以wordcount为例。
2、创建源文件,即输入源。hello.txt文件,内容如下:
tom jerry
henry jim
suse lusy
注:以空格为分隔符
3、然后执行如下命令:
hadoop fs -mkdir -p /Hadoop/Input(在HDFS创建目录)
hadoop fs -put hello.txt /Hadoop/Input(将hello.txt文件上传到HDFS)
hadoop fs -ls /Hadoop/Input (查看上传的文件)
hadoop fs -text /Hadoop/Input/hello.txt (查看文件内容)
4、用spark-shell先测试一下wordcount任务。
(1)启动spark-shell,当然需要在spark的bin目录下执行,但是这里我配置了环境变量。

(2)然后直接输入scala语句:
val file=sc.textFile("hdfs://hacluster/Hadoop/Input/hello.txt")
val rdd = file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)
rdd.collect()
rdd.foreach(println)

ok,测试通过。
5、Scala实现单词计数
1 package com.example.spark
2
3 /**
4 * User: hadoop
5 * Date: 2017/8/17 0010
6 * Time: 10:20
7 */
8 import org.apache.spark.SparkConf
9 import org.apache.spark.SparkContext
10 import org.apache.spark.SparkContext._
11
12 /**
13 * 统计字符出现次数
14 */
15 object ScalaWordCount {
16 def main(args: Array[String]) {
17 if (args.length < 1) {
18 System.err.println("Usage: <file>")
19 System.exit(1)
20 }
21
22 val conf = new SparkConf()
23 val sc = new SparkContext(conf)
24 val line = sc.textFile(args(0))
25
26 line.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect().foreach(println)
27
28 sc.stop()
29 }
30 }
6、用java实现wordcount
package com.example.spark; import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public final class WordCount {
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception {
if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);
}
SparkConf conf = new SparkConf().setAppName("JavaWordCount");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> lines = sc.textFile(args[0],1);
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String s) {
return Arrays.asList(SPACE.split(s));
}
}); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?, ?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
} sc.stop();
}
}
7、IDEA打包。
(1)File ---> Project Structure



点击ok,配置完成后,在菜单栏中选择Build->Build Artifacts...,然后使用Build等命令打包。打包完成后会在状态栏中显示“Compilation completed successfully...”的信息,去jar包输出路径下查看jar包,如下所示。

将这个wordcount.jar上传到集群的节点上,scp wordcount.jar root@10.57.22.244:/opt/ 输入虚拟机root密码。
8、运行jar包。
本文以spark on yarn模式运行jar包。
执行命令运行javawordcount:spark-submit --master yarn-client --class com.example.spark.WordCount --executor-memory 1G --total-executor-cores 2 /opt/wordcount.jar hdfs://hacluster/aa/hello.txt
执行命令运行scalawordcount:spark-submit --master yarn-client --class com.example.spark.ScalaWordCount --executor-memory 1G --total-executor-cores 2 /opt/wordcount.jar hdfs://hacluster/aa/hello.txt
本文以java的wordcount为演示对象,如下图:

以上是直接以spark-submit方式提交任务,下面介绍一种以java web的方式提交。
9、以Java Web的方式提交任务到spark。
用spring boot搭建java web框架,实现代码如下:
1)新建maven项目spark-submit
2)pom.xml文件内容,这里要注意spark的依赖jar包要与scala的版本相对应,如spark-core_2.11,这后面2.11就是你安装的scala的版本
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.4.1.RELEASE</version>
</parent>
<groupId>wordcount</groupId>
<artifactId>spark-submit</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<start-class>com.example.spark.SparkSubmitApplication</start-class>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<java.version>1.8</java.version>
<commons.version>3.4</commons.version>
<org.apache.spark-version>2.1.0</org.apache.spark-version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>${commons.version}</version>
</dependency> <dependency>
<groupId>org.apache.tomcat.embed</groupId>
<artifactId>tomcat-embed-jasper</artifactId>
<scope>provided</scope>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<artifactId>spring-boot-starter-tomcat</artifactId>
<groupId>org.springframework.boot</groupId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty.websocket</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>apache-jsp</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-solr</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.11</artifactId>
<version>${org.apache.spark-version}</version>
</dependency>
<dependency>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
</dependency> <dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.6.5</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.6.5</version>
</dependency> </dependencies>
<packaging>war</packaging> <repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>maven2</id>
<url>http://repo1.maven.org/maven2/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories> <build>
<plugins>
<plugin>
<artifactId>maven-war-plugin</artifactId>
<configuration>
<warSourceDirectory>src/main/webapp</warSourceDirectory>
</configuration>
</plugin> <plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty-maven-plugin</artifactId>
<configuration>
<systemProperties>
<systemProperty>
<name>spring.profiles.active</name>
<value>development</value>
</systemProperty>
<systemProperty>
<name>org.eclipse.jetty.server.Request.maxFormContentSize</name>
<!-- -1代表不作限制 -->
<value>600000</value>
</systemProperty>
</systemProperties>
<useTestClasspath>true</useTestClasspath>
<webAppConfig>
<contextPath>/</contextPath>
</webAppConfig>
<connectors>
<connector implementation="org.eclipse.jetty.server.nio.SelectChannelConnector">
<port>7080</port>
</connector>
</connectors>
</configuration>
</plugin>
</plugins> </build> </project>
(3)SubmitJobToSpark.java
package com.example.spark; import org.apache.spark.deploy.SparkSubmit; /**
* @author kevin
*
*/
public class SubmitJobToSpark { public static void submitJob() {
String[] args = new String[] { "--master", "yarn-client", "--name", "test java submit job to spark", "--class", "com.example.spark.WordCount", "/opt/wordcount.jar", "hdfs://hacluster/aa/hello.txt" };
SparkSubmit.main(args);
}
}
(4)SparkController.java
package com.example.spark.web.controller; import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse; import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody; import com.example.spark.SubmitJobToSpark; @Controller
@RequestMapping("spark")
public class SparkController {
private Logger logger = LoggerFactory.getLogger(SparkController.class); @RequestMapping(value = "sparkSubmit", method = { RequestMethod.GET, RequestMethod.POST })
@ResponseBody
public String sparkSubmit(HttpServletRequest request, HttpServletResponse response) {
logger.info("start submit spark tast...");
SubmitJobToSpark.submitJob();
return "hello";
} }
5)将项目spark-submit打成war包部署到Master节点tomcat上,访问如下请求:
http://10.57.22.244:9090/spark/sparkSubmit
在tomcat的log中能看到计算的结果。
提交任务到spark(以wordcount为例)的更多相关文章
- 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]
编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...
- 提交任务到Spark
1.场景 在搭建好Hadoop+Spark环境后,现准备在此环境上提交简单的任务到Spark进行计算并输出结果.搭建过程:http://www.cnblogs.com/zengxiaoliang/p/ ...
- 提交任务到spark master -- 分布式计算系统spark学习(四)
部署暂时先用默认配置,我们来看看如何提交计算程序到spark上面. 拿官方的Python的测试程序搞一下. qpzhang@qpzhangdeMac-mini:~/project/spark-1.3. ...
- 1.spark的wordcount解析
一.Eclipse(scala IDE)开发local和cluster (一). 配置开发环境 要在本地安装好java和scala. 由于spark1.6需要scala 2.10.X版本的.推荐 2 ...
- [转] 用SBT编译Spark的WordCount程序
问题导读: 1.什么是sbt? 2.sbt项目环境如何建立? 3.如何使用sbt编译打包scala? [sbt介绍 sbt是一个代码编译工具,是scala界的mvn,可以编译scala,java等,需 ...
- Spark 实现wordcount
配置完spark之后,使用spark实现wordcount,这一部分完全参考<深入理解Spark:核心思想与源码分析> 依然使用hadoop wordcountTest的那几个txt文件 ...
- 用SBT编译Spark的WordCount程序
问题导读: 1.什么是sbt? 2.sbt项目环境如何建立? 3.如何使用sbt编译打包scala? sbt介绍 sbt是一个代码编译工具,是scala界的mvn,可以编译scala,java等,需要 ...
- spark 例子wordcount topk
spark 例子wordcount topk 例子描述: [单词计算wordcount ] [词频排序topk] 单词计算在代码方便很简单,基本大体就三个步骤 拆分字符串 以需要进行记数的单位为K,自 ...
- .Net for Spark 实现 WordCount 应用及调试入坑详解
.Net for Spark 实现WordCount应用及调试入坑详解 1. 概述 iNeuOS云端操作系统现在具备物联网.视图业务建模.机器学习的功能,但是缺少一个计算平台产品.最近在调研使用 ...
随机推荐
- SQL Server 数据完整性的实现——约束
SQL Server数据库采用的是关系数据模型,而关系数据模型本身的优点之一就是模型本身集成了数据完整性.作为模型一部分而实施的数据完整性(例如在创建数据表时的列属性定义)称作为声明式(Declara ...
- 行车记+翻车记:.NET Core 新车改造,C# 节能降耗,docker swarm 重回赛道
非常抱歉,10:00~10:30 左右博客站点出现故障,给您带来麻烦了,请您谅解. 故障原因与博文中谈到的部署变更有关,但背后的问题变得非常复杂,复杂到我们都在怀疑与阿里云服务器 CPU 特性有关. ...
- mybatis逆向工程maven版本idea工具
基于springboot2版本 pom基本依赖 <parent> <groupId>org.springframework.boot</groupId> <a ...
- Web Worker 使用教程
一.概述 JavaScript 语言采用的是单线程模型,也就是说,所有任务只能在一个线程上完成,一次只能做一件事.前面的任务没做完,后面的任务只能等着.随着电脑计算能力的增强,尤其是多核 CPU 的出 ...
- .net测试篇之测试神器Autofixture Generator使用与自定义builder
有了上一节自定义配置,很多问题都能解决了,但是如果仅仅是为了解决一个简单问题那么创建一个类显得有点繁重.其实AutoFixture在创建Fixture对象时有很多方便的Fluent配置,我们这里介绍一 ...
- 【JVM从小白学成大佬】3.深入解析强引用、软引用、弱引用、幻象引用
关于强引用.软引用.弱引用.幻象引用的区别,在很多公司的面试题中经常出现,可能有些小伙伴觉得这个知识点比较冷门,但其实大家在开发中经常用到,如new一个对象的时候就是强引用的应用. 在java语言中, ...
- 2014-09~11Removeapp配置篇
金蝶ERP软件 Windows REMOVEAPP 功能需求:将服务器端金蝶客户端软件直接在本地实现,只需输入服务器密码即可启动该软件 配置需求:可用的金蝶软件,SERVER2008 或更高(必须激 ...
- js如何使用radio
<input name="sex" type="radio" value="男" checked="checked" ...
- 操作微信-itchat库的安装
基于pyCharm开发环境,在CMD控制台输入:pip install itchat 等待安装...... Microsoft Windows [版本 6.1.7601]版权所有 (c) 2 ...
- 企查查app新增企业数据抓取
企查查每日新增企业数据抓取尚未完成的工作: 需要自行抓包获取设备id,appid,sign等等 sign和时间戳保持一致即可 把所有的数据库.redis配置 无法自动登录,账号需要独立 redis数据 ...