机器学习实战之logistic回归分类
利用logistic回归进行分类的主要思想:根据现有数据对分类边界建立回归公式,并以此进行分类。
logistic优缺点:
优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。 .
适用数据类型:数值型和标称型数据。
sigmoid函数:
梯度上升法:
梯度:
该公式将一直被迭代执行,直至达到某个停止条件为止,比如迭代次数达到某个指定值或算
法达到某个可以允许的误差范围。
随机梯度上升法:
梯度上升算法在每次更新回归系数时都需要遍历整个数据集, 该方法在处理100个左右的数
据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度就太高了。一种
改进方法是一次仅用一个样本点来更新回归系数,该方法称为随机梯度上升算法。由于可以在新
样本到来时对分类器进行增量式更新,因而随机梯度上升算法是一个在线学习算法。与 “ 在线学
习”相对应,一次处理所有数据被称作是“批处理” 。
梯度下降法:
你最经常听到的应该是梯度下降算法,它与这里的梯度上升算法是一样的,只是公式中的
加法需要变成减法。因此,对应的公式可以写成:
梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。
logistic预测疝气病预测病马的死亡率代码:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import random # 加载数据集
def loadDataSet():
dataMat = []
labelMat = []
fr = open('./testSet.txt')
for line in fr.readlines():
lineData = line.strip().split()
dataMat.append([1.0, float(lineData[0]), float(lineData[1])])
labelMat.append(int(lineData[2]))
return dataMat, labelMat # sigmoid 函数
def sigmoid(inX):
return 1.0 / (1 + np.exp(-inX)) # 梯度上升
def gradAscent(dataMatIn, classLabels, maxCycles):
dataMatrix = np.mat(dataMatIn)
labelsMatrix = np.mat(classLabels).transpose() # 转置,将行向量转置为列向量
m, n = np.shape(dataMatrix) alpha = 0.001
W = np.ones((n, 1))
for i in range(maxCycles):
h = sigmoid(dataMatrix * W) # (100, 1)
error = labelsMatrix - h # (100, 1)
W = W + alpha * dataMatrix.transpose() * error # (3, 100) * (100, 1) return W #改进版随机梯度上升
def stocGradAscent1(dataMatrixIn, classLabels, numIter=150):
dataMatrix = np.array(dataMatrixIn)
m,n = np.shape(dataMatrix)
weights = np.ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4.0/(1.0+j+i)+0.01 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return np.mat(weights.reshape(n, 1)) def plotBestFit(weights, dataMat, labelMat):
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if labelMat[i] == 1:
xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2]) fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
ax.scatter(xcord2, ycord2, s = 30, c = 'green')
x = np.arange(-4.0, 4.0, 0.1)
y = ((np.array((-weights[0] - weights[1] * x) / weights[2]))[0]).transpose()
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() # 预测
def classifyVector(inX, weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0 # 对训练集进行训练,并且对测试集进行测试
def colicTest():
trainFile = open('horseColicTraining.txt')
testFile = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in trainFile.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21])) # 开始训练
weights = stocGradAscent1(trainingSet, trainingLabels, 400)
errorCount = 0.0
numTestVec = 0.0
for line in testFile.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr), weights)) != int(currLine[21]):
errorCount += 1.0
errorRate = errorCount / float(numTestVec)
print("the error rate is:%f" % errorRate)
return errorRate # 多次测试求平均值
def multiTest():
testTimes = 10
errorRateSum = 0.0
for i in range(testTimes):
errorRateSum += colicTest()
print("the average error rate is:%f" % (errorRateSum / float(testTimes))) multiTest()
机器学习实战之logistic回归分类的更多相关文章
- 机器学习实战之Logistic回归
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...
- 05机器学习实战之Logistic 回归
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...
- 《机器学习实战》Logistic回归
注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成 1.Logistic回归理论 http://www.cnblogs.com/wjy-lulu/p/7759515.h ...
- 05机器学习实战之Logistic 回归scikit-learn实现
https://blog.csdn.net/zengxiantao1994/article/details/72787849似然函数 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 机器学习(4)之Logistic回归
机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- 机器学习实战-logistic回归分类
基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...
- 机器学习实践之Logistic回归
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...
随机推荐
- Android 获取当前IP地址
首先设置用户权限 <uses-permission android:name="android.permission.INTERNET"></uses-permi ...
- 基于Git的数据库sql文件的管理——完美解决团队sql操作协同问题
目录 基于Git的数据库sql文件的管理--完美解决团队sql操作协同问题 1.产生背景 2.之前没用Git管理数据库出现的问题 2.1 用同一个库调试带来的问题 3.解决方案 3.1 Sql文件的创 ...
- odoo开发安装插件教程小技巧
安装Odoo插件时而可能很繁琐且易于出现未知错误.当Odoo出现错误提示时.您需要深层次查询内核模块,安装其它依赖插件,下载全部插件,将它们放到恰当的部位,点安装,随后处理错误,然后再次测试,直至凡事 ...
- c#串口通信并处理接收的多个参数
最近摸索做个上位机,简单记录一下关键的几个部分 c#做串口通信主要使用的是System.IO.Ports类,其实还是十分方便的 最终效果如下: 千万不要忘记了下面这个 填写串口相关配置 我们可以通过G ...
- 百度大脑UNIT3.0详解之语音语义一体化方案
在电话客服场景里,用户和机器人交流的过程中,经常会出现沉默.打断机器人.噪声等情况,机器人在应对这些异常情况的时候,需要语音和语义理解技术进行处理,才能实现用户和机器人的流畅交谈.而这些能力的获取与应 ...
- 如何在Oracle 12C中添加多个分区 (Doc ID 1482456.1)
How to Add Multiple Partitions in Oracle 12C (Doc ID 1482456.1) APPLIES TO: Oracle Database - Enterp ...
- gitlab runner使用docker报错(x509: certificate signed by unknown authority)定位
如果gitlab runner使用docker,docker是普通配置,配置好后,runner就可以正常执行任务了. 另外一个环节Docker配置了tls加密连接,添加runner后,runner的配 ...
- [Spring cloud 一步步实现广告系统] 5. 投放系统配置+启动+实体类
广告投放系统启动主类说明 /** * SponsorApplication for 广告赞助商/投递服务启动类 * 添加注解{@link EnableFeignClients}之后,当前微服务就可以调 ...
- ActiveMQ学习总结------Spring整合ActiveMQ 04
通过前几篇的学习,相信大家已经对我们的ActiveMQ的原生操作已经有了个深刻的概念, 那么这篇文章就来带领大家一步一步学习下ActiveMQ结合Spring的实战操作 注:本文将省略一部分与Acti ...
- (五十六)c#Winform自定义控件-瓶子(工业)-HZHControls
官网 http://www.hzhcontrols.com 前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kww ...