利用logistic回归进行分类的主要思想:根据现有数据对分类边界建立回归公式,并以此进行分类。

logistic优缺点:

优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。 .
适用数据类型:数值型和标称型数据。

sigmoid函数:

梯度上升法:

梯度:

该公式将一直被迭代执行,直至达到某个停止条件为止,比如迭代次数达到某个指定值或算
法达到某个可以允许的误差范围。

随机梯度上升法:

梯度上升算法在每次更新回归系数时都需要遍历整个数据集, 该方法在处理100个左右的数
据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度就太高了。一种
改进方法是一次仅用一个样本点来更新回归系数,该方法称为随机梯度上升算法。由于可以在新
样本到来时对分类器进行增量式更新,因而随机梯度上升算法是一个在线学习算法。与 “ 在线学
习”相对应,一次处理所有数据被称作是“批处理” 。

梯度下降法:

你最经常听到的应该是梯度下降算法,它与这里的梯度上升算法是一样的,只是公式中的
加法需要变成减法。因此,对应的公式可以写成:

梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。

logistic预测疝气病预测病马的死亡率代码:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import random # 加载数据集
def loadDataSet():
dataMat = []
labelMat = []
fr = open('./testSet.txt')
for line in fr.readlines():
lineData = line.strip().split()
dataMat.append([1.0, float(lineData[0]), float(lineData[1])])
labelMat.append(int(lineData[2]))
return dataMat, labelMat # sigmoid 函数
def sigmoid(inX):
return 1.0 / (1 + np.exp(-inX)) # 梯度上升
def gradAscent(dataMatIn, classLabels, maxCycles):
dataMatrix = np.mat(dataMatIn)
labelsMatrix = np.mat(classLabels).transpose() # 转置,将行向量转置为列向量
m, n = np.shape(dataMatrix) alpha = 0.001
W = np.ones((n, 1))
for i in range(maxCycles):
h = sigmoid(dataMatrix * W) # (100, 1)
error = labelsMatrix - h # (100, 1)
W = W + alpha * dataMatrix.transpose() * error # (3, 100) * (100, 1) return W #改进版随机梯度上升
def stocGradAscent1(dataMatrixIn, classLabels, numIter=150):
dataMatrix = np.array(dataMatrixIn)
m,n = np.shape(dataMatrix)
weights = np.ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4.0/(1.0+j+i)+0.01 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return np.mat(weights.reshape(n, 1)) def plotBestFit(weights, dataMat, labelMat):
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if labelMat[i] == 1:
xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2]) fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
ax.scatter(xcord2, ycord2, s = 30, c = 'green')
x = np.arange(-4.0, 4.0, 0.1)
y = ((np.array((-weights[0] - weights[1] * x) / weights[2]))[0]).transpose()
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() # 预测
def classifyVector(inX, weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0 # 对训练集进行训练,并且对测试集进行测试
def colicTest():
trainFile = open('horseColicTraining.txt')
testFile = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in trainFile.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21])) # 开始训练
weights = stocGradAscent1(trainingSet, trainingLabels, 400)
errorCount = 0.0
numTestVec = 0.0
for line in testFile.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr), weights)) != int(currLine[21]):
errorCount += 1.0
errorRate = errorCount / float(numTestVec)
print("the error rate is:%f" % errorRate)
return errorRate # 多次测试求平均值
def multiTest():
testTimes = 10
errorRateSum = 0.0
for i in range(testTimes):
errorRateSum += colicTest()
print("the average error rate is:%f" % (errorRateSum / float(testTimes))) multiTest()

机器学习实战之logistic回归分类的更多相关文章

  1. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

  2. 05机器学习实战之Logistic 回归

    Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...

  3. 《机器学习实战》Logistic回归

    注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成 1.Logistic回归理论 http://www.cnblogs.com/wjy-lulu/p/7759515.h ...

  4. 05机器学习实战之Logistic 回归scikit-learn实现

    https://blog.csdn.net/zengxiantao1994/article/details/72787849似然函数 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概 ...

  5. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  6. 机器学习(4)之Logistic回归

    机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一 ...

  7. 第七篇:Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  8. 机器学习实战-logistic回归分类

    基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...

  9. 机器学习实践之Logistic回归

        关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月17日 19:18:31所撰写内容(http://blog.cs ...

随机推荐

  1. Prometheus学习系列(八)之Prometheus API说明

    前言 本文来自Prometheus官网手册 和 Prometheus简介 HTTP API 在Prometheus服务器上的/api/v1下可以访问当前稳定的HTTP API. 将在该端点下添加任何非 ...

  2. C# .NET的BinaryFormatter、protobuf-net、Newtonsoft.Json以及自己写的序列化方法序列化效率和序列化后的文件体积大小对比

    测试结果如下图: 测试结果整理后: 结论: 1.这几个工具中,protobuf-net序列化和反序列化效率是最快的 2.BinaryFormatter和Newtonsoft.Json反序列化慢的比较多 ...

  3. c# 保留2位小数 整数时无小数

    对数值保存两位小数,有时是整数时,不需要显示两位小数.例如值为:1.32 保留两位,结果是1.32,值为:2,结果有两种显示,2和2.00 /// <summary> /// 金额 /// ...

  4. bootstrap-table 常用总结-1

    两种表格工具,今天都用到了,一种是我前几篇写到过的jqgrid,(传送门)另一个就是bootstrap-table了.用过之后会发现,两种表格的方式大同小异,但是为什么这次要换成bootstrap-t ...

  5. Logo(图片)作为报表水印的解决方法

    概述 在<像 word 一样增加水印功能>中,已经介绍了如何在润乾报表中增加文字水印功能,包括了静态及动态水印.水印功能将标识信息嵌入到报表载体后,使得信息安全.版权保护有了更有效的方法. ...

  6. jquery 实现只能选中一个checkbox,选中当前的去除上一个

    jq 实现只能选中一个checkbox,选中当前的去除上一个. <div id="checkboxed"> <input name="check1&qu ...

  7. Dynamics 365中开发和注册插件介绍

    我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  8. This system is not registered with ULN

    [root@DBDATA yum.repos.d]# yum makecacheLoaded plugins: aliases, changelog, downloadonly, fastestmir ...

  9. ORA-14061: 不能更改索引分区列的数据类型或长度

    修改分区表主键时报错: 在行: 2 上开始执行命令时出错 -alter table KC23 modify AAZ210 VARCHAR2(50)错误报告 -SQL 错误: ORA-14061: 不能 ...

  10. MySQL数据库~~~~pymysql 连接 MySQL的客户端

    import pymysql conn = pymysql.connect( host = '127.0.0.1', # 主机 port = 3306, # 端口号 user = 'root', # ...