1.

if __name__=="__main__":
tf.app.run()#运行之前定义的main函数
#将传进来的参数,以及flags.FLAGS定义的参数传入到main函数中

2.

#flags的定义
flags=tf.app.flags
flags.DEFINE_string("save_path",None,"Directory to write the model and training summaries.")
FLAGS=flags.FLAGS

3.

tf.random_uniform((2,2),minval=-0.5,maxval=0.5,dtype=tf.float32)
tf.random_uniform([2,2],minval=-0.5,maxval=0.5,dtype=tf.float32)
#是相同的

4.

tf.nn.uniform_candidate_sampler()#均匀地采样出类别子集
tf.nn.log_uniform_candidate_sampler()
tf.nn.fixed_unigram_candidate_sampler()#按照用户提供的概率分布进行采样
tf.nn.uniform_candidate_sampler(true_classes=,num_true=,num_sampled=,unique=,range_max=,)
#目标的类别,size为[batch_size,num_true]
# num_true 每个训练例子目标类别的数量
#num_sampled 每个批次抽样的类别的数量
#unique 被抽样的类别是否是unique的
#range_max 可能类别的数量

5.

tf.nn.embedding_lookup(params=,ids=,)
#在params中查找ids元素的表示、
#抽取出ids元素行号的数据,列的维度是相同的
tf.reduce_mean(-tf.reduce_sum(y*tf.log(a),reduction_indices=[1]))
#0是按照列向量求均值,1是按照行向量求均值,得到的都是行向量

6.最简单的mnist识别代码

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import math
import gzip
import os
import tempfile
from tensorflow.examples.tutorials.mnist import input_data
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/Users/guoym/Desktop/models-master', 'Directory for storing data')
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
x = tf.placeholder(tf.float32, [None, 784]) # 占位符
y = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
a = tf.nn.softmax(tf.matmul(x, W) + b)
cross_entropy=tf.reduce_mean(-tf.reduce_sum(y*tf.log(a),reduction_indices=[1]))
#注意区分矩阵乘法和一一对应的乘法
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(cross_entropy) correct_prediction=tf.equal(tf.argmax(a,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) sess=tf.InteractiveSession()
tf.initialize_all_variables().run()
for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100)
train.run({x:batch_xs,y:batch_ys})
print (sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

tensorflow的函数的更多相关文章

  1. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  2. 深度学习TensorFlow常用函数

    tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, Tensor ...

  3. tensorflow softmax_cross_entropy_with_logits函数

    1.softmax_cross_entropy_with_logits tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=Non ...

  4. tensorflow l2_loss函数

    1.l2_loss函数 tf.nn.l2_loss(t, name=None) 解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下: out ...

  5. tensorflow l2_normalize函数

    1.l2_normalize函数 tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) 解释:这个函数的作用是利用 L2 范数对指定维度 dim 进 ...

  6. tensorflow softsign函数应用

    1.softsign函数 图像 2.tensorflow softsign应用 import tensorflow as tf input=tf.constant([0,-1,2,-30,30],dt ...

  7. tensorflow elu函数应用

    1.elu函数 图像: 2.tensorflow elu应用 import tensorflow as tf input=tf.constant([0,-1,2,-3],dtype=tf.float3 ...

  8. TensorFlow 常用函数汇总

    本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU ...

  9. TensorFlow 常用函数与方法

    摘要:本文主要对tf的一些常用概念与方法进行描述. tf函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CP ...

  10. 『TensorFlow』函数查询列表_神经网络相关

    tf.Graph 操作 描述 class tf.Graph tensorflow中的计算以图数据流的方式表示一个图包含一系列表示计算单元的操作对象以及在图中流动的数据单元以tensor对象表现 tf. ...

随机推荐

  1. axio安装及使用

    先安装 npm install axios --save 再导入 import $ from "jquery"; import axios from "axios&quo ...

  2. NodeJs 实现 WebSocket 即时通讯(版本二)

    服务端代码 websocket.js 'use strict' const WebSocket = require('ws'); const connections = new Map(); cons ...

  3. .net core 3.0 在过滤器读取request.body 里的请求,controller[FromBody]读取不到参数,解决办法

    1,注入IHttpContextAccessor httpContex 2,var req = _httpContext.HttpContext.Request; //  这句很重要,开启读取 否者下 ...

  4. 查找一个卷对应的osd

    1.首先找到卷的id: 2.使用rados命令找到卷上面的对象数据: 3.通过ceph osd map命令可以查询到对象对应的pgid及pg对应的osd:

  5. NOIP模拟27

    两个机房又和在一起考试 开场看了看T1,感觉挺水的,过. T2,这个式子有点奇怪,暂时没什么思路,过 T3,好像保留最后几位换个根处理一下就行了,过,先去打T1 于是T1大概打了0.5h,连暴力带正解 ...

  6. 我把数表A了

    真kx 之前打一棵沙雕主席树,复杂度和正解一毛一样,结果常数爆炸了! 我一直天真的认为卡卡常这题就能AC,然后卡常卡到死也没A掉,极限数据大概跑了1.1s 今天终于打正解了,离线处理,可以用常数更小的 ...

  7. Centos7下安装nexus3.x 安装

    1.官网下载unix版本 2.上传到linux系统的/usr/目录下 [root@lmll70op-ne ~]# cd /usr/ [root@lmll70op-ne usr]# ll 3.解压,并重 ...

  8. js创建子节点

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  9. jquery layui的巨坑

    jquery layui的巨坑 layui 模块不能写在ajax里 因为 layui只能执行一次 第二次会没效果 再执行需要刷新页面再执行

  10. day5-基本数据类型总结

    一.数字int(..)二.字符串replace/find/join/strip/startswith/split/upper/lower/format tempalte = "i am {n ...