luogu P4981 父子
题目背景
上演在各大学男生寝室的日常 ::
A :A: “我没带纸,快来厕所救我!”
B :B: “叫爸爸。”
A :A: “爸爸!”
........................................................................................
A :A: “我没钱了,能借我点吗。”
B :B: “叫爸爸。”
A :A: “爸爸!”
一个月后、
B :B: “能把钱还给我吗。”
A :A: “叫爸爸。”
B :B: “爸爸!”
题目描述
对于全国各大大学的男生寝室,总是有各种混乱的父子关系。
那么假设现在我们一个男生寝室有不同的 \(n\) 个人,每个人都至多有一个“爸爸”,可以有多个“儿子”,且有且只有一个人没有“爸爸”(毕竟是室长,还是要给点面子,当然了,室长人人当嘛)。
那么现在问题来了,对于一个有 \(n\) 个人的寝室,最多可能存在多少种父子关系,当然每个人之间都必须要有直接或间接的父子关系。
输入格式
第一行一个 正整数 \(t\),表示有组数据。
接下来 \(t\) 行,每行一个整数 \(n\),表示有 \(n\) 个人。
输出格式
共 \(t\) 行,每行一个整数,求关系个数。
由于答案可能较大,则我们需要输出答案对 \(1e9+9\) 取模的值。
Cayley定理:过n个有标志顶点的无根树的数目等于n^(n-2)
本题要求有根,那就在原来基础上乘个n
快速幂求解
#include<cstdio>
#include<iostream>
using namespace std;
const int N=3115,mod=1e9+9;
#define int long long
#define LL long long
int ksm(LL n, LL m){
LL ret=1;
while(m){
if(m&1)ret=(ret*n)%mod;
n=n*n%mod; m>>=1;
}
return ret;
}
signed main(){
int t,n;
cin>>t;
while(t--){
scanf("%lld",&n);
printf("%lld\n",ksm(n,n-1));
}
return 0;
}
luogu P4981 父子的更多相关文章
- P4430 小猴打架、P4981 父子
prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n ...
- P4981 父子 Cayley公式
CayleyCayley公式的定义是这样的,对于n个不同的节点,能够组成的无根树(原来是无向连通图或者是有标志节点的树)的种数是n^(n-2)种.(这里让大家好理解一点,就写成了无根树,其实应该是一样 ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
- 偶然遇见:Cayley定理
看到\(purfer\)序列板子后,想到这个名词在哪见过,于是找到了一个题,还带出一个: \(T1\). 题目链接:P4430 小猴打架 开始极其懵逼,考虑过大力容斥,但还是失败了,原来是: Cayl ...
- prufer编码学习笔记
prufer 编码 对于一个无根树,他的 prufer 编码是这样确定的: 每次找到编号最小的一个叶子节点,也就是度数为\(1\)的节点,把和它相连的点,加入 prufer 编码序列的末尾,然后把这个 ...
- [Luogu 1196] NOI2002 银河英雄传说
[Luogu 1196] NOI2002 银河英雄传说 话说十六年前的 NOI 真简单... 我一开始还把题看错了- 题意:一群人,每个人各自成一队,每次命令让两队首位相接合成一队,每次询问问你某两个 ...
- 【Luogu P3379】LCA问题的倍增解法
Luogu P3379 题意:对于两个节点,寻找他们的最近公共祖先. 一个显而易见的解法是对于每一个节点我们都往上遍历一遍,记录下它每一个祖先,然后再从另一个节点出发,一步一步往上走,找到以前记录过第 ...
- java异常处理(父子异常的处理)
我当初学java异常处理的时候,对于父子异常的处理,我记得几句话“子类方法只能抛出父类方法所抛出的异常或者是其子异常,子类构造器必须要抛出父类构造器的异常或者其父异常”.那个时候还不知道子类方法为什么 ...
- 关于React的父子组件通信等等
//==================================================此处为父子组件通信 1.子组件调用父组件: 父组件将子组件需要调用方法存入props属性内,子组 ...
随机推荐
- it公司比较
1:本人西电通院2013届毕业硕士,根据今年找工作的情况以及身边同学的汇总,总结各大公司的待遇如下,吐血奉献给各位学弟学妹,公司比较全,你想去的公司不在这里面,基本上是无名小公司了:但无名小公司有时也 ...
- PHP微信授权登录用于多个域名的方法
PHP微信授权登录用于多个域名的方法appid和 回调地址换下就好了 <pre><!DOCTYPE html><html lang="en">& ...
- H5+app,自动更新后自动删除安装包
H5+app 自动删除安装包 一.前言 之前做好的app自动更新,遗留下了一个问题,就是自动更新后安装包没有自行删除掉. 好像现在的手机的系统是有安装完自动清理安装包的.想我这个H5+的app安装完后 ...
- Secure CRT注册码
secure CRT 把记忆的东西放在这就行了,:) SecureCRT 5.2.2的注册码 Name: Apollo InteractiveCompany: Apollo ...
- shell脚本2——控制语句
1.顺序结构体 命令从上往下顺序执行 2.分支结构体 1)判断真假 test 表达式 或者 [ 表达式 ](必须有空格) 真返回0,假返回1 test的别名是[, 参数是] 判断表达式 记忆 解释 ! ...
- 小白学习React官方文档看不懂怎么办?
最近在上React课程的时候,发现好多同学不会看文档,所以在这里写一篇文章,希望能给同学们一点点启发. 我们首先打开React官方网站——https://react.docschina.org/doc ...
- 基于Vue的日历组件
可以标注重要日子 自己写的,可能不是特别很好,大家多提意见!!! 地址:https://github.com/jsLWQ/calendar
- 2C 还是 2B,跟找工作有什么关系?
通常,我们会把公司的业务类型分成以下几种: 2C,to Customer,指面向个人客户的业务,即将公司的产品或服务销售给个人,通常做出购买决策的个人也是使用产品或服务的用户.举例说明,像 BAT 发 ...
- JVM集训-----内存结构
一.程序计数器/PC寄存器 (Program Counter Registe) 用于保存当前正在执行的程序的内存地址(下一条jvm指令的执行地址),由于Java是支持多线程执行的,所以程序执行的轨迹不 ...
- HTML的标签认识
<!-- html标签 h1~h6 标题标签(只有1~6,依次减小) p 段落标签 span 无意义的行标签 div 无意义的块标签 b 加粗 ...