The Fair Nut and Rectangles

题意:有n个矩形,然后你可以选择k个矩形,选择一个矩形需要支付代价 ai, 问 总面积- 总支付代价 最大能是多少, 保证没有矩形套矩形。

题解:

sort 一下 只有  x 会递增  y 递减

然后 f[i] = f[j] + (x[i]-x[j])*y[i] - a[i]

f[j] = f[i] - x[i] * y[i] + x[j] * y[i] + a[i]

即 y = f[j], x = x[j], k = y[i],  b = f[i] - x[i] * y[i] + a[i]

我们需要维护 f[i] 尽可能大, 所以我们维护一个上突壳就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e6 + ;
struct Node{
int x, y;
LL a;
bool operator < (const Node & z) const{
return x < z.x;
}
}A[N];
LL f[N];
int q[N];
int main(){
int n;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d%d%lld", &A[i].x, &A[i].y, &A[i].a);
sort(A+, A++n);
int L = , R = ;
for(int i = ; i <= n; ++i){
while(L < R && f[q[L+]]-f[q[L]]>= 1ll*A[i].y * ((A[q[L+]].x - A[q[L]].x))) ++L;
f[i] = f[q[L]] + (1ll*A[i].x-A[q[L]].x)*A[i].y - A[i].a;
while(L < R && ((long double)f[q[R]]-f[q[R-]]) * (A[i].x - A[q[R]].x) <= ((long double)f[i]-f[q[R]]) * ((A[q[R]].x - A[q[R-]].x))) --R;
q[++R] = i;
}
LL ans = ;
for(int i = ; i <= n; ++i) ans = max(ans, f[i]);
cout << ans << endl;
return ;
}

CodeForces 1083 E The Fair Nut and Rectangles 斜率优化DP的更多相关文章

  1. CF1083E The Fair Nut and Rectangles

    CF1083E The Fair Nut and Rectangles 给定 \(n\) 个平面直角坐标系中左下角为坐标原点,右上角为 \((x_i,\ y_i)\) 的互不包含的矩形,每一个矩形拥有 ...

  2. CF 1083 A. The Fair Nut and the Best Path

    A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...

  3. CF 1083 B. The Fair Nut and Strings

    B. The Fair Nut and Strings 题目链接 题意: 在给定的字符串a和字符串b中找到最多k个字符串,使得不同的前缀字符串的数量最多. 分析:  建出trie树,给定的两个字符串就 ...

  4. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  5. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  6. Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)

    Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...

  7. Codeforces 1083E The Fair Nut and Rectangles

    Description 有\(N\)个左下定点为原点的矩阵, 每个矩阵\((x_i,~y_i)\)都有一个数\(a_i\)表示其花费. 没有一个矩阵包含另一个矩阵. 现要你选出若干个矩阵, 使得矩阵组 ...

  8. 【Codeforces 1083A】The Fair Nut and the Best Path

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 我们最后要的是一条最长的路径. 这条路径的权值和是所有点的权值和-所有边的权值和且这个值最大. 显然如果我们在某一条边上的累计的权值和< ...

  9. Codeforces 856D - Masha and Cactus(树链剖分优化 dp)

    题面传送门 题意: 给你一棵 \(n\) 个顶点的树和 \(m\) 条带权值的附加边 你要选择一些附加边加入原树中使其成为一个仙人掌(每个点最多属于 \(1\) 个简单环) 求你选择的附加边权值之和的 ...

随机推荐

  1. CSDN Markdown 超链接

    CSDN Markdown 的超链接总是在当前页面打开新的链接,后来发现了一种可以在新窗口打开超链接的语法,如下: <a href="https://zh.wikipedia.org/ ...

  2. 常用GDB命令行调试命令

    po po是print-object的简写,可用来打印所有NSObject对象.使用举例如下: (gdb) po self <LauncherViewController: 0x552c570& ...

  3. css3系列之transform详解translate

    translate translate这个参数的,是transform 身上的,那么它有什么用呢? 其实他的作用很简单,就是平移,参考自己的位置来平移 translate() translateX() ...

  4. poj 2503 Babelfish(字典树或map或哈希或排序二分)

    输入若干组对应关系,然后输入应该单词,输出对应的单词,如果没有对应的输出eh 此题的做法非常多,很多人用了字典树,还有有用hash的,也有用了排序加二分的(感觉这种方法时间效率最差了),这里我参考了M ...

  5. Apache Flink 1.9 重大特性提前解读

    今天在 Apache Flink meetup ·北京站进行 Flink 1.9 重大新特性进行了讲解,两位讲师分别是 戴资力/杨克特,zhisheng 我也从看完了整个 1.9 特性解读的直播,预计 ...

  6. 夯实Java基础(十四)——Java8新的日期处理类

    1.前言 Java8之前处理日期一直是Java程序员比较头疼的问题,从Java 8之后,Java里面添加了许多的新特性,其中一个最常见也是最实用的便是日期处理的类——LocalDate.LocalDa ...

  7. 客户端埋点实时OLAP指标计算方案

    背景 产品经理想要实时查询一些指标数据,在新版本的APP上线之后,我们APP的一些质量指标,比如课堂连接掉线率,课堂内崩溃率,APP崩溃率等指标,以此来看APP升级之后上课的体验是否有所提升,上课质量 ...

  8. Appium+python自动化(二十九)- 模拟手指在手机上多线多点作战 - 多点触控(超详解)

    简介 在网页中我们经常使用缩放操作来便利的查看具体的信息,在appium中使用MultiAction多点触控的类来实现.MultiAction是多点触控的类,可以模拟用户多点操作.主要包含加载add( ...

  9. manifest.json 解析--手机web app开发笔记(三-1)

    在HBuilderX生成的文档中,还有一个“manifest.json”,只要是创建“移动App”应用,都会在工程下生成这个文件,一看扩展名就知道他是一个json格式文件,文件文件根据w3c的weba ...

  10. kpm字符串匹配算法

    首先是简单的朴素匹配算法 /* * 返回子串t在主串s的位置,若不存在则返回0 */ public static int index(String s, String t) { int i = 0;/ ...