CodeForces 1083 E The Fair Nut and Rectangles 斜率优化DP
题意:有n个矩形,然后你可以选择k个矩形,选择一个矩形需要支付代价 ai, 问 总面积- 总支付代价 最大能是多少, 保证没有矩形套矩形。
题解:
sort 一下 只有 x 会递增 y 递减
然后 f[i] = f[j] + (x[i]-x[j])*y[i] - a[i]
f[j] = f[i] - x[i] * y[i] + x[j] * y[i] + a[i]
即 y = f[j], x = x[j], k = y[i], b = f[i] - x[i] * y[i] + a[i]
我们需要维护 f[i] 尽可能大, 所以我们维护一个上突壳就好了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e6 + ;
struct Node{
int x, y;
LL a;
bool operator < (const Node & z) const{
return x < z.x;
}
}A[N];
LL f[N];
int q[N];
int main(){
int n;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d%d%lld", &A[i].x, &A[i].y, &A[i].a);
sort(A+, A++n);
int L = , R = ;
for(int i = ; i <= n; ++i){
while(L < R && f[q[L+]]-f[q[L]]>= 1ll*A[i].y * ((A[q[L+]].x - A[q[L]].x))) ++L;
f[i] = f[q[L]] + (1ll*A[i].x-A[q[L]].x)*A[i].y - A[i].a;
while(L < R && ((long double)f[q[R]]-f[q[R-]]) * (A[i].x - A[q[R]].x) <= ((long double)f[i]-f[q[R]]) * ((A[q[R]].x - A[q[R-]].x))) --R;
q[++R] = i;
}
LL ans = ;
for(int i = ; i <= n; ++i) ans = max(ans, f[i]);
cout << ans << endl;
return ;
}
CodeForces 1083 E The Fair Nut and Rectangles 斜率优化DP的更多相关文章
- CF1083E The Fair Nut and Rectangles
CF1083E The Fair Nut and Rectangles 给定 \(n\) 个平面直角坐标系中左下角为坐标原点,右上角为 \((x_i,\ y_i)\) 的互不包含的矩形,每一个矩形拥有 ...
- CF 1083 A. The Fair Nut and the Best Path
A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...
- CF 1083 B. The Fair Nut and Strings
B. The Fair Nut and Strings 题目链接 题意: 在给定的字符串a和字符串b中找到最多k个字符串,使得不同的前缀字符串的数量最多. 分析: 建出trie树,给定的两个字符串就 ...
- Codeforces 946G Almost Increasing Array (树状数组优化DP)
题目链接 Educational Codeforces Round 39 Problem G 题意 给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)
Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...
- Codeforces 1083E The Fair Nut and Rectangles
Description 有\(N\)个左下定点为原点的矩阵, 每个矩阵\((x_i,~y_i)\)都有一个数\(a_i\)表示其花费. 没有一个矩阵包含另一个矩阵. 现要你选出若干个矩阵, 使得矩阵组 ...
- 【Codeforces 1083A】The Fair Nut and the Best Path
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 我们最后要的是一条最长的路径. 这条路径的权值和是所有点的权值和-所有边的权值和且这个值最大. 显然如果我们在某一条边上的累计的权值和< ...
- Codeforces 856D - Masha and Cactus(树链剖分优化 dp)
题面传送门 题意: 给你一棵 \(n\) 个顶点的树和 \(m\) 条带权值的附加边 你要选择一些附加边加入原树中使其成为一个仙人掌(每个点最多属于 \(1\) 个简单环) 求你选择的附加边权值之和的 ...
随机推荐
- eclipse Mac 下补全代码
1. 每次输入都自动提示 点击 Eclipse,使其成为第一响应者,preferences->Java->Editor->Content Assist再右下角 Auto activa ...
- HelloDjango 系列教程:第 04 篇:Django 迁移、操作数据库
文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 我们已经编写了博客数据库模型的代码,但那还只是 Python 代码而已,django 还没有把它翻译成数据库语言,因此实际上这 ...
- Zabbix 中使用 Percona Monitoring Plugins 监控 MySQL
1.先安装agent客户端 tar zxvf zabbix-3.2.6.tar.gz cd zabbix-3.2.6 ./configure --prefix=/data/zabbix --enabl ...
- hdu 6397 Character Encoding (生成函数)
Problem Description In computer science, a character is a letter, a digit, a punctuation mark or som ...
- Spring Boot简单环境搭建
#### 一.创建一个简单的Maven项目 使用`Maven`,通过导入`Spring Boot`的`starter`模块,可以将许多程序依赖的包自动导入到工程中.使用`Maven`的`parent ...
- Hadoop学习(9)-spark的安装与简单使用
spark和mapreduce差不多,都是一种计算引擎,spark相对于MapReduce来说,他的区别是,MapReduce会把计算结果放 在磁盘,spark把计算结果既放在磁盘中有放在内存中,ma ...
- gRPC【RPC自定义http2.0协议传输】
gRPC 简介 gRPC是由Google公司开源的高性能RPC框架. gRPC支持多语言 gRPC原生使用C.Java.Go进行了三种实现,而C语言实现的版本进行封装后又支持C++.C#.Node.O ...
- Java并发编程实战笔记—— 并发编程1
1.如何创建并运行java线程 创建一个线程可以继承java的Thread类,或者实现Runnabe接口. public class thread { static class MyThread1 e ...
- nginx在线与离线安装
1.场景描述 项目要部署到新的服务器上,需要安装nginx,刚好安全部门通知了nginx存在安全漏洞(Nginx整数溢出漏洞,nginx1.13.2之后的版本无问题),就下载最新的nginx进行了安装 ...
- 洛谷 P5367 【模板】康托展开(数论,树状数组)
题目链接 https://www.luogu.org/problem/P5367 什么是康托展开 百度百科上是这样说的: “康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. ...