URAL-1982-Electrification Plan最小生成树或并查集
题意:在一个无向图中,给你几个源点,找出把所有点连接到源点后最小的消费;
可以利用并查集:
先用结构体把每个边存起来,再按照消费大小排序。之后从消费小的到大的一个个尝试,两个点需要连接的话,连接上同时把消费也算上去;
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
const int inf = 0x3f3f3f; using namespace std; int n,k;
int fa[+];
struct node
{
int from,to;
int c;
}a[];
bool cmp(node a,node b)
{
return a.c<b.c;
}
void init(){
for(int i=;i<=n;i++)
fa[i] = i;
}
int find(int x)
{
if(fa[x]==x)return x;
else return fa[x] = find(fa[x]);
}
int uni(int x,int y)
{
if(fa[x]==-&&fa[y]==-)return ; //(**)
int px = find(x);
int py = find(y);
if(px==py)return ;
else
{
fa[px] = py;
return ;
}
} int main(){
scanf("%d%d",&n,&k);
init();
for(int i=;i<=k;i++)
{
int x;
scanf("%d",&x);
fa[x]=-; //这个操作我其实不是很明确,我以我的理解加上了(**)这句,
} //表示源点之间不用连接,但是别人写的好像不用加这句话。
int cnt =;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int cost;
scanf("%d",&cost);
if(cost==)continue;
a[++cnt].c=cost;
a[cnt].from = i;
a[cnt].to =j;
}
}
sort(a+,a++cnt,cmp);
int ans = ;
for(int i=;i<=cnt;i++)
{
if(uni(a[i].from,a[i].to))
{
ans += a[i].c;
}
}
printf("%d\n",ans);
return ;
}
我自己就做了一个预处理,(直接把读入的用uni连接起来
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
const int inf = 0x3f3f3f; using namespace std; int n,k;
int fa[+];
struct node
{
int from,to;
int c;
}a[];
bool cmp(node a,node b)
{
return a.c<b.c;
}
void init(){
for(int i=;i<=n;i++)
fa[i] = i;
}
int find(int x)
{
if(fa[x]==x)return x;
else return fa[x] = find(fa[x]);
}
int uni(int x,int y)
{
int px = find(x);
int py = find(y);
if(px==py)return ;
else
{
fa[px] = py;
return ;
}
} int main(){
scanf("%d%d",&n,&k);
init();
int last=-;
for(int i=;i<=k;i++)
{
int x;
scanf("%d",&x);
if(last!=-)
{
int suibian;
suibian =uni(last,x); //不理解别人把fa[x]=-1的操作;
last = x; //自己就先预处理连接好了;
}
else last=x;
}
int cnt =;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int cost;
scanf("%d",&cost);
if(cost==)continue;
a[++cnt].c=cost;
a[cnt].from = i;
a[cnt].to =j;
}
}
sort(a+,a++cnt,cmp);
int ans = ;
for(int i=;i<=cnt;i++)
{
if(uni(a[i].from,a[i].to))
{
ans += a[i].c;
}
}
printf("%d\n",ans);
return ;
}
URAL-1982-Electrification Plan最小生成树或并查集的更多相关文章
- timus 1982 Electrification Plan(最小生成树)
Electrification Plan Time limit: 0.5 secondMemory limit: 64 MB Some country has n cities. The govern ...
- Timusoj 1982. Electrification Plan
http://acm.timus.ru/problem.aspx?space=1&num=1982 1982. Electrification Plan Time limit: 0.5 sec ...
- Electrification Plan 最小生成树(prim+krusl+堆优化prim)
题目 题意: 无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价. 思路: prim:把发电站之间 ...
- 搭桥|codevs1002|最小生成树|Prim|并查集|Elena
1002 搭桥 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点 ...
- 线段树、最短路径、最小生成树、并查集、二分图匹配、最近公共祖先--C++模板
线段树(区间修改,区间和): #include <cstdio> #include <iostream> #include <cstring> using name ...
- URAL 1671 Anansi's Cobweb (并查集)
题意:给一个无向图.每次查询破坏一条边,每次输出查询后连通图的个数. 思路:并查集.逆向思维,删边变成加边. #include<cstdio> #include<cstring> ...
- hdu5441(2015长春赛区网络赛1005)类最小生成树、并查集
题意:有一张无向图,一些点之间有有权边,某条路径的值等于路径上所有边的边权的最大值,而某个点对的值为这两点间所有路径的值的最小值,给出多个询问,每个询问有一个值,询问有多少点对满足其值小于等于询问值. ...
- 2018.11.02 NOIP模拟 飞越行星带(最小生成树/二分+并查集)
传送门 发现题目要求的就是从下到上的瓶颈路. 画个图出来发现跟去年noipnoipnoip提高组的奶酪差不多. 于是可以二分宽度+并查集检验,或者直接求瓶颈. 代码
- URAL-1982 Electrification Plan 最小生成树
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1982 题意:无向图,给n个点,n^2条边,每条边有个一权值,其中有k个点有发电站,给出这 ...
随机推荐
- 【iOS】iOS main() 简介
C 语言编写的程序,其执行入口都是 main(). 用 Objective-C 语言编写的程序也是这样. main.m 中的代码如下: int main(int argc, char * argv[] ...
- Java经典编程题
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题p ...
- 自定义SWT控件七之自定义Shell(可伸缩窗口)
7.可伸缩窗口 该自定义窗口可以通过鼠标随意更改窗口大小 package com.hikvision.encapsulate.view.control.shell; import org.eclips ...
- 解释一下一门语言该有的东东(Javascript)
注释 Js中有两种注释 // 单行注释 /**/ 多行注释 变量 变量就像学校学习的 未知数 如 3 + x = 8 x: 类似变量,在改造一下 x + y = z 当 x=3, y=5, z=8, ...
- DHCP服务器的搭建及抓包分析DHCP的实现
原文:http://blog.51cto.com/liwenhui/105129 1.环境搭建: DC&DHCP SERVER IP:192.168.1.254 ( 这是一台D ...
- Ubuntu 执行chmod -R 777 / 挽救方法
mgj怎么会有堪比rm -rf /*这样神奇的命令,本想着把当前目录下的权限改为777,没想到把整个/目录下全设成777了,直觉告诉我好像哪里有些不对劲,好在一顿xjb折腾最终弄好了,应该没啥大问题, ...
- Java内存模型的基础
Java内存模型的基础 并发编程模型的两个关键问题 在并发编程中,需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在 ...
- 对vue中nextTick()的理解及使用场景说明
异步更新队列: 首先我们要对vue的数据更新有一定理解: vue是依靠数据驱动视图更新的,该更新的过程是异步的. 即:当侦听到你的数据发生变化时, Vue将开启一个队列(该队列被Vue官方称为异步更新 ...
- mysql优化---订单查询优化(1):视图优化+索引创建
订单的表结构采用了垂直分表的策略,将订单相关的不同模块的字段维护在不同表中 在订单处理这个页面,需要查询各种维度, 因此为了方便查询创建了v_sale_order视图(老版本) drop view v ...
- 『深度应用』NLP机器翻译深度学习实战课程·零(基础概念)
0.前言 深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内 ...