Relatively Prime Graph
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

If there are multiple answers then print any of them.

Input

The only line contains two integers nn and mm (1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.

Output

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

Otherwise print the answer in the following format:

The first line should contain the word "Possible".

The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u) there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

If there are multiple answers then print any of them.

Examples
input

Copy
5 6
output

Copy
Possible
2 5
3 2
5 1
3 4
4 1
5 4
input

Copy
6 12
output

Copy
Impossible
Note

Here is the representation of the graph from the first example:

emmm,没想到直接暴力过了。。

直接暴力最大公约数为1的对数,当对数超过m直接break,没有时间超限

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
vector< pair<ll,ll> > edge;
ll gcd( ll a, ll b ) {
if( a == 0 ) {
return b;
} else if( b == 0 ) {
return a;
}
return gcd( b, a%b );
}
int main() {
ll n, m;
cin >> n >> m;
if( m < n-1 ) {
cout << "Impossible" << endl;
} else {
for( ll i = 1; i < n; i ++ ) {
for( ll j = i+1; j <= n; j ++ ) {
if( gcd(i,j) == 1) {
edge.push_back(make_pair(i,j));
if( edge.size() > m ) {
break;
}
}
}
}
if( edge.size() < m ) {
cout << "Impossible" << endl;
} else {
cout << "Possible" << endl;
for( ll i = 0; i < m; i ++ ) {
cout << edge[i].first << " " << edge[i].second << endl;
}
}
}
return 0;
}

  

Relatively Prime Graph CF1009D 暴力 思维的更多相关文章

  1. D. Relatively Prime Graph

    Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E( ...

  2. Codeforces 1009D:Relatively Prime Graph

    D. Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. [Codeforces 1178D]Prime Graph (思维+数学)

    Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...

  4. 1250 Super Fast Fourier Transform(湘潭邀请赛 暴力 思维)

    湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include&l ...

  5. Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)

    Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wan ...

  6. Educational Codeforces Round 47 (Rated for Div. 2) :D. Relatively Prime Graph

    题目链接:http://codeforces.com/contest/1009/problem/D 解题心得: 题意就是给你n个点编号1-n,要你建立m条无向边在两个互质的点之间,最后所有点形成一个连 ...

  7. Codeforces Round #286 (Div. 2)B. Mr. Kitayuta's Colorful Graph(dfs,暴力)

    数据规模小,所以就暴力枚举每一种颜色的边就行了. #include<iostream> #include<cstdio> #include<cstdlib> #in ...

  8. UVA 10200 Prime Time【暴力,精度】

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  9. 暴力/思维 HDOJ 5386 Cover

    题目传送门 /* 题意:给出刷墙的所有的方法,求一种顺序,使得原矩阵刷成目标矩阵 暴力:(题解)我们只要每次找一行或一列颜色除了0都相同的,然后如果有对应的操作,就把这行这列都赋值成0即可 */ /* ...

随机推荐

  1. window下不用安装虚拟机,也可以玩转linux,玩转最新redis

    想要了解redis的最新特性,可是windows下的可以安装的版本最高为3.2,想要验证redis的诸如stream特性的话,就无能为力了. 解决方法之一在windows上安装虚拟机,然后再虚拟机上安 ...

  2. luogu1373_小a和uim之大逃离 多维dp

    传送门 巧妙之处在于dp的设计只用设计差值即可,因此不会mle,枚举的顺序问题也解决了 #include <bits/stdc++.h> using namespace std; #def ...

  3. 6、高级的数组的复制(test4.java)

    这里指的高级,并不是过么高大上,而是说我们可以调用系统函数,直接对数组进行复制,并且这个函数的强大并不止局限于,对数组的复制,而且可以对数组进行截取,在指定位置插入或删除某个元素. 本篇只介绍数组的复 ...

  4. java封装 redis 操作 对象,list集合 ,json串

    /** * 功能说明: * 功能作者: * 创建日期: * 版权归属:每特教育|蚂蚁课堂所有 www.itmayiedu.com */package com.redis.service; import ...

  5. Linux杀不死的进程之CPU使用率700%

    1. 问题发现 [root@zwlbs3 ~]# top i. 发现有个进程CPU使用率居然700%,COMMAND 是一些随机的字符串组成,完了~ 中标了:第一想到就是“沙雕”它,kill 命令给我 ...

  6. 性能测试学习第六天-----JMeter拓展应用

    一.TCP取样器 服务器名称或IP:填写socket接口的ip 端口号:写socket接口的端口号 Re-use connection:是否重用链接,如果选择,同一个线程执行的所有请求都会使用一个tc ...

  7. Zabbix-绘制动态拓扑图高级篇

    0.官网文档介绍: https://www.zabbix.com/documentation/4.0/manual/config/visualisation/maps/map 一.设备名字使用宏显示 ...

  8. 弹性布局(display:flex;)属性详解

    Flexbox 是 flexible box 的简称(注:意思是“灵活的盒子容器”),是 CSS3 引入的新的布局模式.它决定了元素如何在页面上排列,使它们能在不同的屏幕尺寸和设备下可预测地展现出来. ...

  9. SpringMVC源码分析6:SpringMVC的视图解析原理

    title: SpringMVC源码分析6:SpringMVC的视图解析原理 date: 2018-06-07 11:03:19 tags: - SpringMVC categories: - 后端 ...

  10. webservice接口和http接口(API接口)的区别

     web service(SOAP)与HTTP接口的区别: 什么是web service?       答:soap请求是HTTP POST的一个专用版本,遵循一种特殊的xml消息格式Content- ...