pandas 初识(五)
1. 如何实现把一个属性(列)拆分成多列,产生pivot,形成向量信息,计算相关性?
例:
class_ timestamp count
0 10 2019-01-20 13:23:00 1
1 10 2019-01-20 13:24:00 2
2 10 2019-01-20 13:25:00 2
3 10 2019-01-20 13:26:00 1
4 10 2019-01-20 13:27:00 2
转为:
class_ 1 2 3 4 10
timestamp
2019-01-20 13:23:01 1.0 NaN NaN NaN NaN
2019-01-20 13:24:02 NaN NaN 2.0 NaN NaN
2019-01-20 13:25:03 NaN 2.0 NaN NaN NaN
2019-01-20 13:26:02 NaN NaN NaN 1.0 NaN
2019-01-20 13:27:05 NaN NaN NaN NaN 2.0
解决:
import pandas as pd
from pandas import Timestamp info = {'class_': {0: 1, 1: 2, 2: 3, 3: 4, 4: 10},
'timestamp': {0: Timestamp('2019-01-20 13:23:00'),
1: Timestamp('2019-01-20 13:24:00'),
2: Timestamp('2019-01-20 13:25:00'),
3: Timestamp('2019-01-20 13:26:00'),
4: Timestamp('2019-01-20 13:27:00')},
'count': {0: 1, 1: 2, 2: 2, 3: 1, 4: 2}}
df = pd.DataFrame(info)
# df.pivot(index='timestamp', columns="class_", values="count").fillna(0)
df.pivot(index='timestamp', columns="class_", values="count")
2. 如何实现把一个属性的多列(属性唯一)合并成一列
例:
class_ 1 2 3 4 10
timestamp
2019-01-20 13:23:01 1.0 NaN NaN NaN NaN
2019-01-20 13:24:02 NaN NaN 2.0 NaN NaN
2019-01-20 13:25:03 NaN 2.0 NaN NaN NaN
2019-01-20 13:26:02 NaN NaN NaN 1.0 NaN
2019-01-20 13:27:05 NaN NaN NaN NaN 2.0
转为:
class_ timestamp count
0 10 2019-01-20 13:23:00 1
1 10 2019-01-20 13:24:00 2
2 10 2019-01-20 13:25:00 2
3 10 2019-01-20 13:26:00 1
4 10 2019-01-20 13:27:00 2
解决:
import pandas as pd
from pandas import Timestampinfo = {'class_': {0: 1, 1: 2, 2: 3, 3: 4, 4: 10},
'timestamp': {0: Timestamp('2019-01-20 13:23:00'),
1: Timestamp('2019-01-20 13:24:00'),
2: Timestamp('2019-01-20 13:25:00'),
3: Timestamp('2019-01-20 13:26:00'),
4: Timestamp('2019-01-20 13:27:00')},
'count': {0: 1, 1: 2, 2: 2, 3: 1, 4: 2}}
df = pd.DataFrame(info)
# df1 = _df.pivot(index='timestamp', columns="class_", values="count").dropna()
df1 = _df.pivot(index='timestamp', columns="class_", values="count")
df1 = _df.stack().reset_index()
df1.columns = ["class_", "count"]
pandas 初识(五)的更多相关文章
- pandas初识
pandas初识 1.生成DataFrame型的数据 import pandas as pd import numpy as np dates = pd.date_range('20130101',p ...
- pandas 初识(四)
Pandas 和 sqlalchemy 配合实现分页查询 Mysql 并获取总条数 @api.route('/show', methods=["POST"]) def api_sh ...
- pandas 初识(三)
Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...
- pandas 初识(一)
基本内容 Series: Series 是有一组数据(numpy的数据类型 numpy.ndarray)以及一组数据标签(即索引)组成,可以看成一个一个定长的有序字典(索引值到数据值的一个映射) ob ...
- pandas 初识(二)
基本统计 pivot_table(数据透视表 ): 使用appfunc, 按不同index分类统计各特征values的值 df.pivot_table(index="Pclass" ...
- pandas(五)处理缺失数据和层次化索引
pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据.它只是一个便于被检测的标记而已. >>> string_data = Series(['aardvark','artich ...
- pandas求五日线并画图
import pandas as pd import numpy as np import matplotlib.pyplot as plt stock_data = pd.read_csv('000 ...
- pandas 初识(六)-可视化
Pandas 在一张图中绘制多条线 import pandas as pd import numpy as npimport matplotlib.pyplot as plt df = pd.Data ...
- 利用Python进行数据分析-Pandas(第五部分-数据规整:聚合、合并和重塑)
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是panda ...
随机推荐
- vue中computed(计算属性)和watch在实现父子组件props同步时的实际区分
vue中computed和watch的对比是一个很有意思的话题. 看过官网教程以后,我们往往更倾向多使用computed.computed优点很多,却在某些时候不太适用. 今天我们就稍微讨论一下,当我 ...
- 性能达到原生 MySQL 七倍,华为云 Taurus 技术解读【华为云技术分享】
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/devcloud/article/detai ...
- MySql数据基础之数据表操作
MySql数据库中主要利用多个数据表进行数据的存储,我们可以将数据表理解成一个Excel表格,Excel表格的第一列可以将它看为id列,主要任务是数据表中数据的唯一标识,不能重复.不能为空.如果将数据 ...
- ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports
Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...
- Coderfocers-616c
You are given a rectangular field of n × m cells. Each cell is either empty or impassable (contains ...
- Crush 算法以及PG和PGP调整经验
PG和PGP调整经验调整前准备为了降低对业务的影响,需要调整以下参数ceph tell osd.* injectargs ‘–osd-max-backfills 1’ceph tell osd.* i ...
- 【ES】338- ECMAScirpt 2019 新特性汇总
点击上方"前端自习课"关注,学习起来~ 最近在做的一个活动,大家都可以参与: 送 1600 元超大现金红包啦,走过路过不要错过哦 ~ 最近 ECMAScript2019,最新提案完 ...
- Java关于赋值
下面的程序有问题吗?如果有问题说明一下, 如果没有问题猜测一下运行结果: public static void main(String[] args){ short s = 1; s=s+1; Sys ...
- JVM系列三(垃圾收集器).
一.概述 1. 哪些内存需要回收 上篇文章 我们介绍了 Java 内存运行时区域的各个部分,其中程序计数器.虚拟机栈.本地方法栈三个区域随线程而生,随线程而灭,在这几个区域内就不需要过多考虑回收的问题 ...
- vue click.stop阻止点击事件继续传播
<div id="app"> <div @click="dodo"> <button @:click="doThis&q ...