在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标。下面是调用weka类,输出AOC的源码:

try {
// 1.读入数据集 Instances data = new Instances(
new BufferedReader(
new FileReader("E:\\Develop/Weka-3-6/data/contact-lenses.arff"))); data.setClassIndex(data.numAttributes() - ); // 2.训练分类器并用十字交叉验证法来获得Evaluation对象
// 注意这里的方法与我们在上几节中使用的验证法是不同。
Classifier cl = new NaiveBayes();
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(cl, data, , new Random()); // 3.生成用于得到ROC曲面和AUC值的Instances对象
       System.out.println(eval.toClassDetailsString());
            System.out.println(eval.toSummaryString());
            System.out.println(eval.toMatrixString());
} catch (Exception e) {
e.printStackTrace();
}

  接着说一下交叉验证;

  如果没有分开训练集和测试集,可以使用Cross Validation方法,Evaluation中crossValidateModel方法的四个参数分别为,第一个是分类器,第二个是在某个数据集上评价的数据集,第三个参数是交叉检验的次数(10是比较常见的),第四个是一个随机数对象。

  注意:使用crossValidateModel时,分类器不需要先训练,否则buildClassifier方法会初始化分类器,交叉验证的配置结果就没有用了。

  类crossValidateModel的源码如下:

 public void crossValidateModel(Classifier classifier, Instances data,
int numFolds, Random random, Object... forPredictionsPrinting)
throws Exception { // Make a copy of the data we can reorder
data = new Instances(data);
data.randomize(random);
if (data.classAttribute().isNominal()) {
data.stratify(numFolds);
} // We assume that the first element is a StringBuffer, the second a Range
// (attributes
// to output) and the third a Boolean (whether or not to output a
// distribution instead
// of just a classification)
if (forPredictionsPrinting.length > ) {
// print the header first
StringBuffer buff = (StringBuffer) forPredictionsPrinting[];
Range attsToOutput = (Range) forPredictionsPrinting[];
boolean printDist = ((Boolean) forPredictionsPrinting[]).booleanValue();
printClassificationsHeader(data, attsToOutput, printDist, buff);
} // Do the folds
for (int i = ; i < numFolds; i++) {
Instances train = data.trainCV(numFolds, i, random);
setPriors(train);
Classifier copiedClassifier = Classifier.makeCopy(classifier);
copiedClassifier.buildClassifier(train);
Instances test = data.testCV(numFolds, i);
evaluateModel(copiedClassifier, test, forPredictionsPrinting);
}
m_NumFolds = numFolds;
}

输出结果截图:

更新中。。。

libsvm 下载地址 https://github.com/cjlin1/libsvm

    github地址   https://github.com/cjlin1/libsvm

机器学习:weka中Evaluation类源码解析及输出AUC及交叉验证介绍的更多相关文章

  1. Java集合---Array类源码解析

    Java集合---Array类源码解析              ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...

  2. Scala 深入浅出实战经典 第65讲:Scala中隐式转换内幕揭秘、最佳实践及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  3. java.lang.Void类源码解析_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 在一次源码查看ThreadGroup的时候,看到一段代码,为以下: /* * @throws NullPointerEx ...

  4. Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...

  5. Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  6. Scala 深入浅出实战经典 第48讲:Scala类型约束代码实战及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  7. .Net Core中的配置文件源码解析

    一.配置简述 之前在.Net Framework平台开发时,一般配置文件都是xml格式的Web.config,而需要配置其他格式的文件就需要自己去读取内容,加载配置了..而Net Core支持从命令行 ...

  8. 解析jQuery中extend方法--源码解析以及递归的过程《二》

    源码解析 在解析代码之前,首先要了解extend函数要解决什么问题,以及传入不同的参数,会达到怎样的效果.extend函数内部处理传入的不同参数,返回处理后的对象. extend函数用来扩展对象,增加 ...

  9. Spring中AOP相关源码解析

    前言 在Spring中AOP是我们使用的非常频繁的一个特性.通过AOP我们可以补足一些面向对象编程中不足或难以实现的部分. AOP 前置理论 首先在学习源码之前我们需要了解关于AOP的相关概念如切点切 ...

随机推荐

  1. Slickflow.NET 开源工作流引擎快速入门之三: 简单或分支流程代码编写示例

    前言:对于急切想了解引擎功能的开发人员,在下载版本后,就想尝试编写代码,完成一个流程的开发和测试.本文试图从请假流程,或分支模式来快速了解引擎代码的编写. 1. 创建或分支流程图形 或分支流程是常见的 ...

  2. 做一个logitic分类之鸢尾花数据集的分类

    做一个logitic分类之鸢尾花数据集的分类 Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例.数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都 ...

  3. Netty源码分析 (九)----- 拆包器的奥秘

    Netty 的解码器有很多种,比如基于长度的,基于分割符的,私有协议的.但是,总体的思路都是一致的. 拆包思路:当数据满足了 解码条件时,将其拆开.放到数组.然后发送到业务 handler 处理. 半 ...

  4. Spring Cloud 系列之 Spring Cloud Stream

    Spring Cloud Stream 是消息中间件组件,它集成了 kafka 和 rabbitmq .本篇文章以 Rabbit MQ 为消息中间件系统为基础,介绍 Spring Cloud Stre ...

  5. ASP.NET Core 3.0 gRPC 双向流

    目录 ASP.NET Core 3.0 使用gRPC ASP.NET Core 3.0 gRPC 双向流 ASP.NET Core 3.0 gRPC 认证授权 一.前言 在前一文 <ASP.NE ...

  6. Django-中间件-csrf扩展请求伪造拦截中间件-Django Auth模块使用-效仿 django 中间件配置实现功能插拔式效果-09

    目录 昨日补充:将自己写的 login_auth 装饰装在 CBV 上 django 中间件 django 请求生命周期 ***** 默认中间件及其大概方法组成 中间件的执行顺序 自定义中间件探究不同 ...

  7. Scrapy项目 - 实现豆瓣 Top250 电影信息爬取的爬虫设计

    通过使Scrapy框架,掌握如何使用Twisted异步网络框架来处理网络通讯的问题,进行数据挖掘和对web站点页面提取结构化数据,可以加快我们的下载速度,也可深入接触各种中间件接口,灵活的完成各种需求 ...

  8. 基于Docker搭建大数据集群(二)基础组件配置

    主要内容 jdk环境搭建 scala环境搭建 zookeeper部署 mysql部署 前提 docker容器之间能免密钥登录 yum源更换为阿里源 安装包 微云分享 | tar包目录下 JDK 1.8 ...

  9. opencv之霍夫曼变换

    霍夫变换不仅可以找出图片中的直线,也可以找出圆,椭圆,三角形等等,只要你能定义出直线方程,圆形的方程等等. 不得不说,现在网上的各种博客质量真的不行,网上一堆文章,乱TM瞎写,误人子弟.本身自己就没有 ...

  10. Spring 事务注解@Transactional

    事务管理一般有编程式和声明式两种,编程式是直接在代码中进行编写事物处理过程,而声名式则是通过注解方式或者是在xml文件中进行配置,相对编程式很方便. 而注解方式通过@Transactional 是常见 ...