机器学习:weka中Evaluation类源码解析及输出AUC及交叉验证介绍
在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标。下面是调用weka类,输出AOC的源码:
try {
// 1.读入数据集 Instances data = new Instances(
new BufferedReader(
new FileReader("E:\\Develop/Weka-3-6/data/contact-lenses.arff"))); data.setClassIndex(data.numAttributes() - ); // 2.训练分类器并用十字交叉验证法来获得Evaluation对象
// 注意这里的方法与我们在上几节中使用的验证法是不同。
Classifier cl = new NaiveBayes();
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(cl, data, , new Random()); // 3.生成用于得到ROC曲面和AUC值的Instances对象
System.out.println(eval.toClassDetailsString());
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
} catch (Exception e) {
e.printStackTrace();
}
接着说一下交叉验证;
如果没有分开训练集和测试集,可以使用Cross Validation方法,Evaluation中crossValidateModel方法的四个参数分别为,第一个是分类器,第二个是在某个数据集上评价的数据集,第三个参数是交叉检验的次数(10是比较常见的),第四个是一个随机数对象。
注意:使用crossValidateModel时,分类器不需要先训练,否则buildClassifier方法会初始化分类器,交叉验证的配置结果就没有用了。
类crossValidateModel的源码如下:
public void crossValidateModel(Classifier classifier, Instances data,
int numFolds, Random random, Object... forPredictionsPrinting)
throws Exception { // Make a copy of the data we can reorder
data = new Instances(data);
data.randomize(random);
if (data.classAttribute().isNominal()) {
data.stratify(numFolds);
} // We assume that the first element is a StringBuffer, the second a Range
// (attributes
// to output) and the third a Boolean (whether or not to output a
// distribution instead
// of just a classification)
if (forPredictionsPrinting.length > ) {
// print the header first
StringBuffer buff = (StringBuffer) forPredictionsPrinting[];
Range attsToOutput = (Range) forPredictionsPrinting[];
boolean printDist = ((Boolean) forPredictionsPrinting[]).booleanValue();
printClassificationsHeader(data, attsToOutput, printDist, buff);
} // Do the folds
for (int i = ; i < numFolds; i++) {
Instances train = data.trainCV(numFolds, i, random);
setPriors(train);
Classifier copiedClassifier = Classifier.makeCopy(classifier);
copiedClassifier.buildClassifier(train);
Instances test = data.testCV(numFolds, i);
evaluateModel(copiedClassifier, test, forPredictionsPrinting);
}
m_NumFolds = numFolds;
}
输出结果截图:
更新中。。。
libsvm 下载地址 https://github.com/cjlin1/libsvm
github地址 https://github.com/cjlin1/libsvm
机器学习:weka中Evaluation类源码解析及输出AUC及交叉验证介绍的更多相关文章
- Java集合---Array类源码解析
Java集合---Array类源码解析 ---转自:牛奶.不加糖 一.Arrays.sort()数组排序 Java Arrays中提供了对所有类型的排序.其中主要分为Prim ...
- Scala 深入浅出实战经典 第65讲:Scala中隐式转换内幕揭秘、最佳实践及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- java.lang.Void类源码解析_java - JAVA
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 在一次源码查看ThreadGroup的时候,看到一段代码,为以下: /* * @throws NullPointerEx ...
- Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第48讲:Scala类型约束代码实战及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- .Net Core中的配置文件源码解析
一.配置简述 之前在.Net Framework平台开发时,一般配置文件都是xml格式的Web.config,而需要配置其他格式的文件就需要自己去读取内容,加载配置了..而Net Core支持从命令行 ...
- 解析jQuery中extend方法--源码解析以及递归的过程《二》
源码解析 在解析代码之前,首先要了解extend函数要解决什么问题,以及传入不同的参数,会达到怎样的效果.extend函数内部处理传入的不同参数,返回处理后的对象. extend函数用来扩展对象,增加 ...
- Spring中AOP相关源码解析
前言 在Spring中AOP是我们使用的非常频繁的一个特性.通过AOP我们可以补足一些面向对象编程中不足或难以实现的部分. AOP 前置理论 首先在学习源码之前我们需要了解关于AOP的相关概念如切点切 ...
随机推荐
- Slickflow.NET 开源工作流引擎快速入门之三: 简单或分支流程代码编写示例
前言:对于急切想了解引擎功能的开发人员,在下载版本后,就想尝试编写代码,完成一个流程的开发和测试.本文试图从请假流程,或分支模式来快速了解引擎代码的编写. 1. 创建或分支流程图形 或分支流程是常见的 ...
- 做一个logitic分类之鸢尾花数据集的分类
做一个logitic分类之鸢尾花数据集的分类 Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例.数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都 ...
- Netty源码分析 (九)----- 拆包器的奥秘
Netty 的解码器有很多种,比如基于长度的,基于分割符的,私有协议的.但是,总体的思路都是一致的. 拆包思路:当数据满足了 解码条件时,将其拆开.放到数组.然后发送到业务 handler 处理. 半 ...
- Spring Cloud 系列之 Spring Cloud Stream
Spring Cloud Stream 是消息中间件组件,它集成了 kafka 和 rabbitmq .本篇文章以 Rabbit MQ 为消息中间件系统为基础,介绍 Spring Cloud Stre ...
- ASP.NET Core 3.0 gRPC 双向流
目录 ASP.NET Core 3.0 使用gRPC ASP.NET Core 3.0 gRPC 双向流 ASP.NET Core 3.0 gRPC 认证授权 一.前言 在前一文 <ASP.NE ...
- Django-中间件-csrf扩展请求伪造拦截中间件-Django Auth模块使用-效仿 django 中间件配置实现功能插拔式效果-09
目录 昨日补充:将自己写的 login_auth 装饰装在 CBV 上 django 中间件 django 请求生命周期 ***** 默认中间件及其大概方法组成 中间件的执行顺序 自定义中间件探究不同 ...
- Scrapy项目 - 实现豆瓣 Top250 电影信息爬取的爬虫设计
通过使Scrapy框架,掌握如何使用Twisted异步网络框架来处理网络通讯的问题,进行数据挖掘和对web站点页面提取结构化数据,可以加快我们的下载速度,也可深入接触各种中间件接口,灵活的完成各种需求 ...
- 基于Docker搭建大数据集群(二)基础组件配置
主要内容 jdk环境搭建 scala环境搭建 zookeeper部署 mysql部署 前提 docker容器之间能免密钥登录 yum源更换为阿里源 安装包 微云分享 | tar包目录下 JDK 1.8 ...
- opencv之霍夫曼变换
霍夫变换不仅可以找出图片中的直线,也可以找出圆,椭圆,三角形等等,只要你能定义出直线方程,圆形的方程等等. 不得不说,现在网上的各种博客质量真的不行,网上一堆文章,乱TM瞎写,误人子弟.本身自己就没有 ...
- Spring 事务注解@Transactional
事务管理一般有编程式和声明式两种,编程式是直接在代码中进行编写事物处理过程,而声名式则是通过注解方式或者是在xml文件中进行配置,相对编程式很方便. 而注解方式通过@Transactional 是常见 ...