1 为什么随机梯度下降法能work?

https://www.zhihu.com/question/27012077中回答者李文哲的解释

 
2 随机梯度下降法的好处?
(1)加快训练速度(2)噪音可以使得跳出局部最优
 
3 权衡方差和偏差
偏差反映的是模型的准确度(对训练数据的吻合程度),方差则反映模型的稳定性(对测试数据的泛化能力)。模型越复杂,偏差越小,方差越大。
 
 4 减少过拟合的方法
(1)减少特征个数
(2)增大数据量
(3)引入正则项
 
 
 5 L1和L2正则
(1)

L0范数:||x||0为x向量各个非零元素的个数

L1范数:  ||x||1 为x向量各个元素绝对值之和。
L2范数:  ||x||2为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数

(2)

L0正则的特点是:防止过拟合,并给出稀疏结果用于特征选择,但由于加L0后问题很难求解,所以一般用L1来做稀疏。

L1正则的特点是:防止过拟合,给出稀疏结果,常用于特征选择。

L2正则的特点是防止过拟合。

(3)

L0能得到稀释结果比较好理解,那么为什么L1也能得到稀疏结果呢?

首先,加了正则之后的优化问题可以如下等价:

然后来看看W是二维的情况下:

可以发现,L2所规定的约束范围与等高线的交点通常不在坐标轴上,而L1由于范围是一个棱形,等高线与其交点刚好落在坐标轴上,对应于w1为0。当W是一个更高维的情况也是类似,这就解释了为什么L1能给出一个稀疏的结果,而L2不能。

 
*(4)L2正则的梯度很好求解,但是L1则不能简单求导解决,往往是用下面三种方法来解决:
 
(5)L1正则有什么问题?

如果有几个变量相关性比较大,它会随机选出其 中之一, 而不考虑其他的变量。

机器学习tips的更多相关文章

  1. 【笔记】机器学习 - 李宏毅 - 10 - Tips for Training DNN

    神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容 ...

  2. 【机器学习基础】关于深度学习的Tips

    继续回到神经网络章节,上次只对模型进行了简要的介绍,以及做了一个Hello World的练习,这节主要是对当我们结果不好时具体该去做些什么呢?本节就总结一些在深度学习中一些基本的解决问题的办法. 为什 ...

  3. 【Scala-ML】使用Scala构建机器学习工作流

    引言 在这一小节中.我将介绍基于数据(函数式)的方法来构建数据应用.这里会介绍monadic设计来创建动态工作流,利用依赖注入这种高级函数式特性来构建轻便的计算工作流. 建模过程 在统计学和概率论中, ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  5. 6条 Tips 为你照亮 GitHub 寻宝之路

    找房子.找保姆.找装修......在Github是不行的,但是:找Demo,找构架,找工具,找资源......就上Github!Github,啥都有.今天跟大家分享几条快速在Github找到想要的资源 ...

  6. 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)

    本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26  ...

  7. 人工智能_机器学习——pandas - 箱型图

    箱型图对数据的展示也是非常清晰的,这是箱型图的一些代码 #导报 机器学习三剑客 import numpy as np import pandas as pd from matplotlib impor ...

  8. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  9. 学习TF:《TensorFlow机器学习实战指南》中文PDF+英文PDF+代码

    从实战角度系统讲解TensorFlow基本概念及各种应用实践.真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带你由浅入深系统掌握TensorFlow机器学习算法及其实现. <Tensor ...

随机推荐

  1. (ps2018)Adobe Photoshop CC 2018 中文版破解版

    ps2018新功能 1.更紧密连接的 Photoshop.全新的智慧型锐利化. 2.智慧型增加取样.内含 Extended 功能.Camera RAW 8 和图层支援 3.可编辑的圆角矩形.多重形状和 ...

  2. GPS常识-A版(详)

    第一章 绪论 1.简述GPS系统的特点有哪些? GPS在测绘工程中应用的优点 P13 ●定位精度高 应用实践证明,相对静态定位1小时以上观测解,其平面位置:在300-1500m范围内,绝对误差小于1m ...

  3. 学习4:总结# 1.列表 # 2.元祖 # 3.range

    列表 -- list 有序,可变的,索引, 作用:存储数据的,支持很多种数据类型 定义方式: lst = [1,"alex","黑哥"] 增: append 追 ...

  4. EPPLUS 实现excel报表数据及公式填充

    年后工作第一天,根据客户要求修善EPPLUS报表. Epplus: Epplus是一个使用Open Office XML(Xlsx)文件格式,能读写Excel 2007/2010文件的开源组件 好处很 ...

  5. CentOS 7离线安装Ansible

    前言 我一直都想成为自动化运维界最亮的仔,奈何自己实力不允许.不过,我一直都在奋斗的路上:这不,最近就在学习自动化运维界的神器--Ansible. 要系统的学习一下Ansible,那就是要先搭建学习环 ...

  6. 个人永久性免费-Excel催化剂功能第79波-自动及手动备份功能,比Onedrive还好用

    在OFFICE365里,有个自动保存功能,可惜保存的地址是在Onedrive里,在中国国情下,备份十分卡顿,近乎难以忍受的慢.虽然现在收费性的网盘部分是可以有文件版本的备份功能,但也是繁琐且最要命的是 ...

  7. Oracle 统计信息介绍

      统计信息自动执行需要以下条件满足: dba_autotask_task 字段status值ENABLED dba_autotask_client 字段status值ENABLED dba_auto ...

  8. 细说RESTFul API之版本管理

    目录 接口实现版本管理的意义 如何实现接口的版本管理 项目实战 接口实现版本管理的意义 API版本管理的重要性不言而喻,对于API的设计者和使用者而言,版本管理都有着非常重要的意义. 首先,对于API ...

  9. 【iOS】Xcode unexpected code bundles

    如图所示: ……

  10. 关于报错:The Microsoft.ACE. Oledb.12.0 provider was not registered on the local computer

    错误描述:The Microsoft.ACE. Oledb.12.0 provider was not registered on the local computer 最近在Web项目中做一个自动生 ...