背景

AB实验可谓是互联网公司进行产品迭代增加用户粘性的大杀器。但人们对AB实验的应用往往只停留在开实验算P值,然后let it go。。。let it go 。。。

让我们把AB实验的结果简单的拆解成两个方面:
\[P(实验结果显著) = P(统计检验显著|实验有效)× P(实验有效)\]
如果你的产品改进方案本来就没啥效果当然怎么开实验都没用,但如果方案有效,请不要让 statictical Hack 浪费一个优秀的idea

如果预期实验效果比较小,有哪些基础操作来增加实验显著性呢?

通常情况下为了增加一个AB实验的显著性,有两种常见做法:增加流量或者增长实验时间。但对一些可能对用户体验产生负面影响或者成本较高的实验来说,上述两种方法都略显粗糙。

对于成熟的产品来说大多数的改动带来的提升可能都是微小的!

在数据为王的今天,我们难道不应该采用更精细化的方法来解决问题么?无论是延长实验时间还是增加流量一方面都是为了增加样本量,因为样本越多,方差越小,p值越显著,越容易检测出一些微小的改进。

因此如果能合理的通过统计方法降低方差,就可能更快,更小成本的检测到微小的效果提升

CUPED(Controlled-experiment Using Pre-Experiment Data)应运而生。 下面我会简单总结一下论文的核心方法,还有几个Bing, Netflix 以及Booking的应用案例。

论文

Deng A, Xu Y, Kohavi R, Walker T. Improving the Sensitivity of Online Controlled Experiments by Utilizing Pre-experiment Data. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM; 2013. pp. 123–132. Paper链接

核心方法总结

论文的核心在于通过实验前数据对实验核心指标进行修正,在保证无偏的情况下,得到方差更低, 更敏感的新指标,再对新指标进行统计检验(p值)。

这种方法的合理性在于,实验前核心指标的方差是已知的,且和实验本身无关的,因此合理的移除指标本身的方差不会影响估计效果。

作者给出了stratification和Covariate两种方式来修正指标,同时给出了在实际应用中可能碰到的一些问题以及解决方法.

stratifiaction

这种方式针对离散变量,一句话概括就是分组算指标。如果已知实验核心指标的方差很大,那么可以把样本分成K组,然后分组估计指标。这样分组估计的指标只保留了组内方差,从而剔除了组间方差。
\[
\begin{align}
k &= {1,2,...,K} \\
\hat{Y}_{strat} &= \sum_{k=1}^{K} w_k * (\frac{1}{n_k}*\sum_{x_i \in k} Y_i )\\
Var(\hat{Y}) &= Var_{\text{within_strat}} + Var_{\text{between_strat}}\\
&=\sum_{k=1}^K\frac{w_k}{n} \sigma_k^2 + \sum_{k=1}^K\frac{w_k}{n} (\mu_k - \mu)^2\\
&>=\sum_{k=1}^K\frac{w_k}{n} \sigma_k^2 = Var(\hat{Y}_{strat})
\end{align}
\]

Covariate

Covariate适用于连续变量。需要寻找和实验核心指标(Y)存在高相关性的另一连续特征(X),然后用该特征调整实验后的核心指标。X和Y相关性越高方差下降幅度越大。因此往往可以直接选择实验前的核心指标作为特征。只要保证特征未受到实验影响,在随机AB分组的条件下用该指标调整后的核心指标依旧是无偏的。

\[
\begin{align}
Y_i^{cov} &= Y_i - \theta(X_i - E(x))\\
\hat{Y}_{cov} &= \hat{Y} - \theta(\bar{x} - E(x))\\
\theta &= cov(X,Y)/cov(X)\\
Var(\hat{Y}_{cov}) & = Var(\hat{Y}) * (1-\theta^2)
\end{align}
\]

stratification和Covariate其实是相同的原理,从两个角度来看:

  • 从回归预测的角度,实验核心指标是Y,降低Y的方差就是寻找和Y相关的自变量X来解释Y中信息的过程(提升\(R^2\)),X可以是连续也可以是离散的
  • 从投资组合的角度,Y是组合中的一项资产,想要降低交易Y的风险(方差),就要做空和Y相关的X资产来对冲风险,相关性越高对冲效果越好

下图摘自Booking的案例,他们的核心指标是每周的房间预定量,Covariate是实验前的每周房间预定量,博客链接在案例分享里。

实战攻略

covariate的选择

这里的选择包括两个方面,特征的选择和计算特征的pre-experiment时间长度的选择。

核心指标在per-experiment的估计通常是很好的covariate的选择,且估计covariate选择的时间段相对越长效果越好。时间越长covariate的覆盖量越大,且受到短期波动的影响越小估计更稳定。

没有pre-experiment数据怎么办

这个现象在互联网中很常见,新用户或者很久不活跃的用户都会面临没有近期行为特征的问题。作者认为可以结合stratification方法对有/无covariate的用户进一步打上标签。或者其实不仅局限于pre-experiment特征,只要保证特征不受到实验影响post-experiment特征也是可以的。

而在Booking的案例中,作者选择对这部分样本不作处理,因为通常缺失值是用样本均值来填充,在上述式子中就等于是不做处理。

Attention

Covariate选择的核心是\(E(X^{treatment}) = E(X^{control})\),这一点不论你选择什么特征, 是pre-experiment还是post-experiment都要保证。

当然也有用CUPED来矫正实验组对照组差异的,但这个内容不在这里讨论。

应用案例

Bing 加载时间对用户点击率的影响

论文中作者在实际AB实验中检验了CUPED的效果。Bing实验检测检测加载时间对用户点击率的影响。 一个原本运行两周只有个别天显著的实验在用CUPED调整后在第一天就显著,当把CUPED估计用的样本减少一半后显著性依旧超过直接使用T-test.

Netflix 多种方法的实际效果对比

Huizhi Xie,Juliette Aurisset.Improving the Sensitivity of Online Controlled Experiments: Case Studies at Netflix

Netflix尝试了一种新的stratification, 上述论文中的stratification被称作post-stratification因为它只在估计实验效果时用到分组,这时用pre-experiment估计的分组概率会和随机AB分组得到的实验中的分组概率存在一定差异,所以Netflix尝试在实验前就进行分层分组。通过多个实验结果,Netflix得到以下结论:

  • 大样本下,post-strat在实际中更灵活和pre-strat表现相当
  • 能否成功找到和实验核心指标相关的covariate是成功的关键

Booking.com 新日历交互对用户影响

How Booking.com increases the power of online experiments with CUPED

实验效果对比如下,CUPED用更少的样本更短的时间得到了显著的结果。了解细节请戳上面的博客,作者讲的非常通俗易懂。

想更多了解AB实验高端系列的朋友,戳这里呦

AB实验的高端玩法系列2 - 更敏感的AB实验, CUPED!的更多相关文章

  1. AB实验的高端玩法系列3 - AB组不随机?观测试验?Propensity Score

    背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随 ...

  2. AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE

    CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...

  3. 第四模块MySQL50题作业,以及由作业引申出来的一些高端玩法

    一.表关系 先参照如下表结构创建7张表格,并创建相关约束                 班级表:class       学生表:student       cid caption grade_id ...

  4. Word 查找替换高级玩法系列之 -- 把论文中的缩写词快速变成目录下边的注释表

    1. 前言 问题:Word写论文如何把文中的缩写快速转换成注释表? 原来样子: 想要的样子: 2. 步骤 使用查找替换高级用法,替换缩写顺序 选中所有文字 打开查找替换对话框,输入以下表达式: 替换后 ...

  5. windows下mongodb基础玩法系列二CURD附加一

    windows下mongodb基础玩法系列 windows下mongodb基础玩法系列一介绍与安装 windows下mongodb基础玩法系列二CURD操作(创建.更新.读取和删除) windows下 ...

  6. windows下mongodb基础玩法系列二CURD操作(创建、更新、读取和删除)

    windows下mongodb基础玩法系列 windows下mongodb基础玩法系列一介绍与安装 windows下mongodb基础玩法系列二CURD操作(创建.更新.读取和删除) windows下 ...

  7. windows下mongodb基础玩法系列一介绍与安装

    windows下mongodb基础玩法系列 windows下mongodb基础玩法系列一介绍与安装 windows下mongodb基础玩法系列二CURD操作(创建.更新.读取和删除) windows下 ...

  8. Word 查找替换高级玩法系列之 -- 段首批量添加字符

    打开「查找和替换」输入框,按照下图操作: 更多查找替换高级玩法,参看:Word查找替换高级玩法系列 -- 目录篇 未完 ...... 点击访问原文(进入后根据右侧标签,快速定位到本文)

  9. Hadoop大数据零基础高端实战培训系列配文本挖掘项目

随机推荐

  1. Day 9 用户管理

    1.什么是用户? 能正常登陆系统的都算用户 windows系统和linux系统的用户有什么区别? 本质上没有区别, linux支持多个用户同一时刻登陆系统, 互相之间不影 响 而windows只允许同 ...

  2. 阿里云Centos 7安装MongoDB 4.2.0

    背景:最近公司项目需要将后台接口优化到100ms内.因此需要对接口逻辑,数据优化做处理, 正好使用到了Redis缓存,mysql,mongoDB的优化,今天记录一下在阿里云centos上安装mongo ...

  3. 004:CSS三大重点之二:浮动(拖标、不占位置、转行内块)

    目录 1:拖标.不占位.转行内块 2:首先浮动的盒子需要和标准流的父级搭配使用,其次 特别的注意浮动可以使元素显示模式体现为行内块特性. 3:清除浮动 前言 CSS的定位机制有3种:普通流(标准流). ...

  4. Python连载39-生成器、next函数、yield返回值

    ​一.生成器 1.定义(generator):一边循环一边计算下一个元素的机制/算法 2.满三个条件 (1)每次调用都能产生出for循环需要的下一个元素 (2)如果达到最后一个后,能够爆出StopIt ...

  5. 给idea设置默认使用的maven配置

    一,前言 大家都知道,java开发中最经常使用的开发工具是Maven,最近看新同事在使用idea,我也下载了一个,准备尝试一下. 而maven是非诚方便进行工程管理的,至少管理jar包,是非常方便的, ...

  6. Mybatis源码解析,一步一步从浅入深(一):创建准备工程

    Spring SpringMVC Mybatis(简称ssm)是一个很流行的java web框架,而Mybatis作为ORM 持久层框架,因其灵活简单,深受青睐.而且现在的招聘职位中都要求应试者熟悉M ...

  7. unity - TileMap的注意事项

    本文记述了一些在使用Tilemap绘制场景时的需要注意的细节问题. 关于Tilemap的创建及使用本文不做说明,但推荐佳作:Unity中使用Tilemap快速创建2D游戏世界 - feng 本文项目地 ...

  8. 品Spring:bean工厂后处理器的调用规则

    上一篇文章介绍了对@Configuration类的处理逻辑,这些逻辑都写在ConfigurationClassPostProcessor类中. 这个类不仅是一个“bean工厂后处理器”,还是一个“be ...

  9. Hive窗口函数最全案例详解

    语法: 分析函数 over(partition by 列名 order by 列名 rows between 开始位置 and 结束位置) 常用分析函数: 聚合类 avg().sum().max(). ...

  10. 读《深入理解Elasticsearch》点滴-过滤器

    1.过滤器不影响文档得分 2.过滤的唯一目的是用特定筛选条件来缩小结果范围:而查询不仅缩小结果范围,还会影响文档的得分 3.过滤器运行更加高效(因为不用计算得分) 4.通常过滤器使用Bits接口,返回 ...