传送门

解题思路:

  一道比较有趣的题,解题工作主要分为两块:

  ①找出k(k=0表示小A先走,k=1表示小B先走,下面同理)点i出发下一个到达的点to[k][i];

  一开始偷懒用了vector(偷懒一时爽),由于vector的erase操作是o(n)的,这个预处理时间复杂度就彪到o(n2)了。这里改成set就可以将复杂度降到o(nlogn),用链表的话讲道理可以降到o(n)但是排序就要o(nlogn)毫无*用。具体操作就是二分再前后比较(简称瞎搞)。

  ②两个人点i出发走2j步走各自开车所走过的路程分别表示为da[i][j][k],db[i][j][k],最终达到点表示为f[i][j][k]。da[i][j][k]表示k从i点出发走了2j步的小A要开车的路程。那么da[i][j][k]+db[i][j][k]就表示了k先手开车从点i出发走了2j步共走过的路程。预处理出第一步和第二步,(转移方程见代码)。

  运用二进制拆分的思想,假设出发点为s,p表示当前到达的点,ta、tb分别表示小A和小B从s出发达到p点各自走过的路程,x表示能走得最大路程。从log(最大步数)到0遍历j,如果ta+tb+da[p][j][k]+db[p][j][k]<=x,则令ta和tb分别加上da[p][j][k]和db[p][j][k],p=f[i][j][k]。枚举所有的点进行上述操作就可得到结果。

丑陋的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+;
typedef long long ll;
ll da[maxn][][],db[maxn][][];map <int,int> m;
int h[maxn],to[][maxn],f[maxn][][];set <int> v;
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&h[i]),v.insert(h[i]),m[h[i]]=i;
for(int i=;i<n;i++){
v.erase(h[i]);
auto id=v.lower_bound(h[i]);auto id1=id,id2=id;
if(id==v.begin()){
to[][i]=m[(*id)];
id1++;
if(id1!=v.end())
to[][i]=m[(*id1)];
}
else if(id==v.end()){
id1--;
if(id!=v.begin())
to[][i]=m[(*id1)];
if(id1!=v.begin())
id1--,to[][i]=m[(*id1)];
}
else{
id1--;
int t1=abs(h[i]-(*id)),t2=abs(h[i]-(*id1));
if(t1>t2){
to[][i]=m[(*id1)];id2=id1;id2--;
int t3=(id1!=v.begin())?abs(h[i]-(*id2)):2e9;
if(t1>=t3) to[][i]=m[(*id2)];
else if(t1<t3) to[][i]=m[(*id)];
}
else if(t1<t2){
to[][i]=m[(*id)];id2++;
int t3=(id2!=v.end())?abs(h[i]-(*id2)):2e9;
if(t2>t3) to[][i]=m[(*id2)];
else if(t2<=t3) to[][i]=m[(*id1)];
}
else{
to[][i]=m[(*id1)];
to[][i]=m[(*id)];
}
}
}
for(int i=;i<=n;i++)
f[i][][]=to[][i],f[i][][]=to[][i];
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
f[i][][k]=f[f[i][][k]][][-k];
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
f[i][j][k]=f[f[i][j-][k]][j-][k];
for(int i=;i<=n;i++)
da[i][][]=abs(h[(to[][i]==)?i:to[][i]]-h[i]),
db[i][][]=abs(h[(to[][i]==)?i:to[][i]]-h[i]);
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
da[i][][k]=da[i][][k]+da[f[i][][k]][][-k],
db[i][][k]=db[i][][k]+db[f[i][][k]][][-k];
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
da[i][j][k]=da[i][j-][k]+da[f[i][j-][k]][j-][k],
db[i][j][k]=db[i][j-][k]+db[f[i][j-][k]][j-][k];
int x;scanf("%d",&x);int ans;double mi=1e18;
for(int s=;s<n;s++){
int p=s;ll ta=,tb=;
for(int j=;j>=;j--)
if(ta+tb+da[p][j][]+db[p][j][]<=x){
ta+=da[p][j][];
tb+=db[p][j][];
p=f[p][j][];
}
double t;if(tb==) t=1e18-;
else t=(double)1.0*ta/tb;
if(t<mi) ans=s,mi=t;
}
printf("%d\n",ans);
int q;scanf("%d",&q);
while(q--){
int s;scanf("%d%d",&s,&x);
int p=s;ll ta=,tb=;
for(int j=;j>=;j--)
if(ta+tb+da[p][j][]+db[p][j][]<=x){
ta+=da[p][j][];
tb+=db[p][j][];
p=f[p][j][];
}
printf("%d %d\n",ta,tb);
}
}

CH5701 开车旅行(倍增dp+set)的更多相关文章

  1. CH5701 开车旅行

    题意 5701 开车旅行 0x50「动态规划」例题 描述 小A和小B决定利用假期外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ...

  2. P1081 [NOIP2012]开车旅行[倍增]

    P1081 开车旅行    题面较为啰嗦.大概概括:一个数列,只能从一个点向后走,两种方案:A.走到和自己差的绝对值次小的点B.走到和自己差的绝对值最小点:花费为此差绝对值:若干询问从规定点向后最多花 ...

  3. $Noip2012\ Luogu1081$ 开车旅行 倍增优化$ DP$

    Luogu Description Sol 1.发现对于每个城市,小A和小B的选择是固定的,可以预处理出来,分别记为ga[],gb[] 2.并且,只要知道了出发城市和出发天数,那么当前城市和小A,小B ...

  4. 【vijos1780】【NOIP2012】开车旅行 倍增

    题目描述 有\(n\)个城市,第\(i\)个城市的海拔为\(h_i\)且这\(n\)个城市的海拔互不相同.编号比较大的城市在东边.两个城市\(i,j\)之间的距离为\(|h_i-h_j|\) 小A和小 ...

  5. P1081 开车旅行[倍增](毒瘤题)

    其实就是个大模拟. 首先,根据题意,小A和小B从任意一个城市开始走,无论\(X\)如何,其路径是一定唯一的. 显然对于两问都可以想出一个\(O(n^2)\)的暴力,即直接一步一步地向右走. 首先,我们 ...

  6. 洛谷1081 (NOIp2012) 开车旅行——倍增预处理

    题目:https://www.luogu.org/problemnew/show/P1081 预处理从每个点开始a能走多少.b能走多少.可以像dp一样从后往前推. 但有X的限制.所以该数组可以变成倍增 ...

  7. Luogu1081 NOIP2012 开车旅行 倍增

    题目传送门 为什么NOIP的题目都这么长qwq 话说2012的D1T3和D2T3都是大火题啊qwq 预处理神题 对于这种跳跳跳的题目考虑使用倍增优化枚举.先预处理某个点之后距离最小和次小的城市,然后倍 ...

  8. 洛谷P1081 开车旅行(倍增)

    题意 题目链接 Sol 咕了一年的题解.. 并不算是很难,只是代码有点毒瘤 \(f[i][j]\)表示从\(i\)号节点出发走了\(2^j\)轮后总的距离 \(da[i][j]\)同理表示\(a\)的 ...

  9. 洛谷 P1081 开车旅行 —— 倍增

    题目:https://www.luogu.org/problemnew/show/P1081 真是倍增好题! 预处理:f[i][j] 表示从 i 点开始走 2^j 次 AB (A,B各走一次)到达的点 ...

随机推荐

  1. appium移动自动化详解

    1移动自动化简介 移动自动化就是通过代码来控制手机,模拟人的动作,对手机进行一些点击,输入等操作,那python代码如何能控制到手机呢?目前的思路应该是python代码->Appium-pyth ...

  2. 计算广告中的CPM和eCPM

    计算广告中的CPM和eCPM CPM和eCPM分别是什么? CPM(Cost per Mille ) : 千次展示付费.是针对广告主说的,你要花多少钱,购买一千次广告展示的机会.类似的还有CPC (C ...

  3. ASP.NET Core应用的7种依赖注入方式

    ASP.NET Core框架中的很多核心对象都是通过依赖注入方式提供的,如用来对应用进行初始化的Startup对象.中间件对象,以及ASP.NET Core MVC应用中的Controller对象和V ...

  4. JAVA和C#中数据库连接池原理与应用

    JAVA和C#中数据库连接池原理 在现在的互联网发展中,高并发成为了主流,而最关键的部分就是对数据库操作和访问,在现在的互联网发展中,ORM框架曾出不穷, 比如:.Net-Core的EFCore.Sq ...

  5. Celery框架的基本使用方法

    一. Celery简介 Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度. Celery的架构由三部分组成,消息中间件(message ...

  6. elasticsearch和kibana安装后,外网无法访问

    问题描述: 现在解压elasticsearch之后,启动,通过http://localhost:9200可以访问的到,但是http://ip:9200访问不到 解决方法: 修改elasticsearc ...

  7. Tainted canvases may not be exported的问题解决

    项目里使用到用canvas生成海报,在toDataURL报了这个错误Tainted canvases may not be exported. 原因就在于使用了跨域的图片,所以说是被污染的画布.解决方 ...

  8. Unable to locate JAR/zip in file system as specified by the driver definitio

    把之前的驱动包删掉,然后把你的驱动包导入就行了 现在OK键就算正常了

  9. spring boot 装载自定义yml文件

    yml格式的配置文件感觉很人性化,所以想把项目中的.properties都替换成.yml文件,蛋疼的是springboot自1.5以后就把@configurationProperties中的locat ...

  10. Python3安装Crypto加密包

    Python3安装Crypto加密包 下载链接 加密包地址 步骤 下载加密包,解压加密包到Python安装目录下Lib\site-packages目录中,尝试在Pycharm中导入 from Cryp ...