传送门

解题思路:

  一道比较有趣的题,解题工作主要分为两块:

  ①找出k(k=0表示小A先走,k=1表示小B先走,下面同理)点i出发下一个到达的点to[k][i];

  一开始偷懒用了vector(偷懒一时爽),由于vector的erase操作是o(n)的,这个预处理时间复杂度就彪到o(n2)了。这里改成set就可以将复杂度降到o(nlogn),用链表的话讲道理可以降到o(n)但是排序就要o(nlogn)毫无*用。具体操作就是二分再前后比较(简称瞎搞)。

  ②两个人点i出发走2j步走各自开车所走过的路程分别表示为da[i][j][k],db[i][j][k],最终达到点表示为f[i][j][k]。da[i][j][k]表示k从i点出发走了2j步的小A要开车的路程。那么da[i][j][k]+db[i][j][k]就表示了k先手开车从点i出发走了2j步共走过的路程。预处理出第一步和第二步,(转移方程见代码)。

  运用二进制拆分的思想,假设出发点为s,p表示当前到达的点,ta、tb分别表示小A和小B从s出发达到p点各自走过的路程,x表示能走得最大路程。从log(最大步数)到0遍历j,如果ta+tb+da[p][j][k]+db[p][j][k]<=x,则令ta和tb分别加上da[p][j][k]和db[p][j][k],p=f[i][j][k]。枚举所有的点进行上述操作就可得到结果。

丑陋的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+;
typedef long long ll;
ll da[maxn][][],db[maxn][][];map <int,int> m;
int h[maxn],to[][maxn],f[maxn][][];set <int> v;
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&h[i]),v.insert(h[i]),m[h[i]]=i;
for(int i=;i<n;i++){
v.erase(h[i]);
auto id=v.lower_bound(h[i]);auto id1=id,id2=id;
if(id==v.begin()){
to[][i]=m[(*id)];
id1++;
if(id1!=v.end())
to[][i]=m[(*id1)];
}
else if(id==v.end()){
id1--;
if(id!=v.begin())
to[][i]=m[(*id1)];
if(id1!=v.begin())
id1--,to[][i]=m[(*id1)];
}
else{
id1--;
int t1=abs(h[i]-(*id)),t2=abs(h[i]-(*id1));
if(t1>t2){
to[][i]=m[(*id1)];id2=id1;id2--;
int t3=(id1!=v.begin())?abs(h[i]-(*id2)):2e9;
if(t1>=t3) to[][i]=m[(*id2)];
else if(t1<t3) to[][i]=m[(*id)];
}
else if(t1<t2){
to[][i]=m[(*id)];id2++;
int t3=(id2!=v.end())?abs(h[i]-(*id2)):2e9;
if(t2>t3) to[][i]=m[(*id2)];
else if(t2<=t3) to[][i]=m[(*id1)];
}
else{
to[][i]=m[(*id1)];
to[][i]=m[(*id)];
}
}
}
for(int i=;i<=n;i++)
f[i][][]=to[][i],f[i][][]=to[][i];
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
f[i][][k]=f[f[i][][k]][][-k];
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
f[i][j][k]=f[f[i][j-][k]][j-][k];
for(int i=;i<=n;i++)
da[i][][]=abs(h[(to[][i]==)?i:to[][i]]-h[i]),
db[i][][]=abs(h[(to[][i]==)?i:to[][i]]-h[i]);
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
da[i][][k]=da[i][][k]+da[f[i][][k]][][-k],
db[i][][k]=db[i][][k]+db[f[i][][k]][][-k];
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
for(int k=;k<=;k++)
da[i][j][k]=da[i][j-][k]+da[f[i][j-][k]][j-][k],
db[i][j][k]=db[i][j-][k]+db[f[i][j-][k]][j-][k];
int x;scanf("%d",&x);int ans;double mi=1e18;
for(int s=;s<n;s++){
int p=s;ll ta=,tb=;
for(int j=;j>=;j--)
if(ta+tb+da[p][j][]+db[p][j][]<=x){
ta+=da[p][j][];
tb+=db[p][j][];
p=f[p][j][];
}
double t;if(tb==) t=1e18-;
else t=(double)1.0*ta/tb;
if(t<mi) ans=s,mi=t;
}
printf("%d\n",ans);
int q;scanf("%d",&q);
while(q--){
int s;scanf("%d%d",&s,&x);
int p=s;ll ta=,tb=;
for(int j=;j>=;j--)
if(ta+tb+da[p][j][]+db[p][j][]<=x){
ta+=da[p][j][];
tb+=db[p][j][];
p=f[p][j][];
}
printf("%d %d\n",ta,tb);
}
}

CH5701 开车旅行(倍增dp+set)的更多相关文章

  1. CH5701 开车旅行

    题意 5701 开车旅行 0x50「动态规划」例题 描述 小A和小B决定利用假期外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ...

  2. P1081 [NOIP2012]开车旅行[倍增]

    P1081 开车旅行    题面较为啰嗦.大概概括:一个数列,只能从一个点向后走,两种方案:A.走到和自己差的绝对值次小的点B.走到和自己差的绝对值最小点:花费为此差绝对值:若干询问从规定点向后最多花 ...

  3. $Noip2012\ Luogu1081$ 开车旅行 倍增优化$ DP$

    Luogu Description Sol 1.发现对于每个城市,小A和小B的选择是固定的,可以预处理出来,分别记为ga[],gb[] 2.并且,只要知道了出发城市和出发天数,那么当前城市和小A,小B ...

  4. 【vijos1780】【NOIP2012】开车旅行 倍增

    题目描述 有\(n\)个城市,第\(i\)个城市的海拔为\(h_i\)且这\(n\)个城市的海拔互不相同.编号比较大的城市在东边.两个城市\(i,j\)之间的距离为\(|h_i-h_j|\) 小A和小 ...

  5. P1081 开车旅行[倍增](毒瘤题)

    其实就是个大模拟. 首先,根据题意,小A和小B从任意一个城市开始走,无论\(X\)如何,其路径是一定唯一的. 显然对于两问都可以想出一个\(O(n^2)\)的暴力,即直接一步一步地向右走. 首先,我们 ...

  6. 洛谷1081 (NOIp2012) 开车旅行——倍增预处理

    题目:https://www.luogu.org/problemnew/show/P1081 预处理从每个点开始a能走多少.b能走多少.可以像dp一样从后往前推. 但有X的限制.所以该数组可以变成倍增 ...

  7. Luogu1081 NOIP2012 开车旅行 倍增

    题目传送门 为什么NOIP的题目都这么长qwq 话说2012的D1T3和D2T3都是大火题啊qwq 预处理神题 对于这种跳跳跳的题目考虑使用倍增优化枚举.先预处理某个点之后距离最小和次小的城市,然后倍 ...

  8. 洛谷P1081 开车旅行(倍增)

    题意 题目链接 Sol 咕了一年的题解.. 并不算是很难,只是代码有点毒瘤 \(f[i][j]\)表示从\(i\)号节点出发走了\(2^j\)轮后总的距离 \(da[i][j]\)同理表示\(a\)的 ...

  9. 洛谷 P1081 开车旅行 —— 倍增

    题目:https://www.luogu.org/problemnew/show/P1081 真是倍增好题! 预处理:f[i][j] 表示从 i 点开始走 2^j 次 AB (A,B各走一次)到达的点 ...

随机推荐

  1. 对象数组化 Object.values(this.totalValueObj).forEach(value => {

    对象数组化 Object.values(this.totalValueObj).forEach(value => {

  2. Nginx 入门及基本命令行操作

    Nginx 介绍 Nginx 是一个高性能的 Web 服务器,从 2001 年发展至今,由于 Nginx 对硬件和操作系统内核特性的深度挖掘,使得在保持高并发的同时还能够保持高吞吐量.Nginx 还采 ...

  3. VS2019 C++动态链接库的创建使用(3) - 如何导出类

    如何在动态链接库里导出一个类? ①在库头文件里增加一个类声明,class DLL1_API Point是将类内所有成员都导出,如果只导出某个成员函数,则只需在对应的成员函数前加DLL1_API即可: ...

  4. MyBatis框架——动态SQL

    MyBatis 作为⼀个“半⾃动化”的 ORM 框架,需要开发者⼿动定义 SQL 语句. 在业务需求⽐较复杂的情 况下,⼿动拼接 SQL 语句的⼯作量会⾮常⼤,为了适⽤于不同的业务需求,往往需要做很多 ...

  5. 【转】Java包管理器Maven学习

    Maven 引入Jar包的几种情况 1.通过pom.xml中导入的jar包 (1)链接打开http://mvnrepository.com/ (2)搜索罐包,比如我想要的是servlet的api.ja ...

  6. SQL的分类使用(增删改查)

    1.SQL的分类使用(*代表重点的程度)    DDL ** (Data Definition Language)数据库定义语言        用来定义数据库对象: 库 表 列 等    DCL (D ...

  7. 114 Flatten Binary Tree to Linked List [Python]

    114 Flatten Binary Tree to Linked List Given a binary tree, flatten it to a linked list in-place. 将二 ...

  8. 全国职业技能大赛信息安全管理与评估-MySQL弱口令利用

    MySQL读文件 #coding=utf-8 import MySQLdb host = '172.16.1.' for i in range(129,131): tag = host+str(i) ...

  9. MQ的理论理解

    MQ(消息队列)简介 概念 : 消息队列(MQ)是一种应用程序对应用程序的通信方法. 应用程序通过写和检索出入列队的针对应用程序的数据(消息)来通信,而无需专用连接来链接它们. 消息传递指的是程序之间 ...

  10. 决战Leetcode: easy part(51-96)

    本博客是个人原创的针对leetcode上的problem的解法,所有solution都基本通过了leetcode的官方Judging,个别未通过的例外情况会在相应部分作特别说明. 欢迎互相交流! em ...