代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

这节讲解两个基础的损失函数的实现:

from __future__ import division
import numpy as np
from mlfromscratch.utils import accuracy_score
from mlfromscratch.deep_learning.activation_functions import Sigmoid class Loss(object):
def loss(self, y_true, y_pred):
return NotImplementedError() def gradient(self, y, y_pred):
raise NotImplementedError() def acc(self, y, y_pred):
return 0 class SquareLoss(Loss):
def __init__(self): pass def loss(self, y, y_pred):
return 0.5 * np.power((y - y_pred), 2) def gradient(self, y, y_pred):
return -(y - y_pred) class CrossEntropy(Loss):
def __init__(self): pass def loss(self, y, p):
# Avoid division by zero
p = np.clip(p, 1e-15, 1 - 1e-15)
return - y * np.log(p) - (1 - y) * np.log(1 - p) def acc(self, y, p):
return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1)) def gradient(self, y, p):
# Avoid division by zero
p = np.clip(p, 1e-15, 1 - 1e-15)
return - (y / p) + (1 - y) / (1 - p)

其中y是真实值对应的标签,p是预测值对应的标签。

补充:

  • numpy.clip():看个例子

    import numpy as np
    x=np.array([1,2,3,5,6,7,8,9])
    np.clip(x,3,8)
    array([3, 3, 3, 5, 6, 7, 8, 8])

这里使用到了mlfromscrach/utils/data_operation.py中的:

def accuracy_score(y_true, y_pred):
""" Compare y_true to y_pred and return the accuracy """
accuracy = np.sum(y_true == y_pred, axis=0) / len(y_true)
return accuracy

用于计算准确率。

【python实现卷积神经网络】损失函数的定义(均方误差损失、交叉熵损失)的更多相关文章

  1. 【python实现卷积神经网络】定义训练和测试过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. 【python实现卷积神经网络】开始训练

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  3. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam)

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. 【python实现卷积神经网络】全连接层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】批量归一化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  8. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  9. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  10. 【python实现卷积神经网络】上采样层upSampling2D实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

随机推荐

  1. Redis(十二):redis请求转发的实现

    请求转发一般的原因为: 1. 该请求自身无法处理,需要转发给对应的服务器处理: 2. 为实现负载均衡,使用路由服务,选择目标实例进行转发: 在集群模式下,请求可以打到任何一台redis服务器上.然而并 ...

  2. 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

  3. 采用最简单的方式在ASP.NET Core应用中实现认证、登录和注销

    在安全领域,认证和授权是两个重要的主题.认证是安全体系的第一道屏障,是守护整个应用或者服务的第一道大门.当访问者请求进入的时候,认证体系通过验证对方的提供凭证确定其真实身份.认证体系只有在证实了访问者 ...

  4. python-pathlib

    2019-12-12 04:27:17 我们知道在不同的操作系统中文件路径的组成方式是不同的,因此在python中关于路径的问题以往我们通常采用os.path.join来进行路径的字符串级别的串联,通 ...

  5. dirname,basename的用法与用途

    #dirname介绍 当对文件使用dirname时,返回文件的上级目录,输出是否是绝对路径取决于输入的文件名是绝对路径 如果对目录使用,则返回上级目录 basename命令与dirname相反,读取文 ...

  6. latex中文支持ubuntu

    latex安装: sudo apt install texlive-full 中文字体安装: sudo apt-get install latex-cjk-all      字体包中包含bsmi,bk ...

  7. 巴什博弈 HDU-1846

    描述:一堆石子有 n 个 ,两个人开始轮流取,每人最多取m个,最少取1个,最后一个将石子取完的是赢家. 思路:对于先手来说,如果有(m+1)个石子,先手取 k 个,后手就可以取 m+1-k 个,所以有 ...

  8. -bash: syntax error near unexpected token `newline'问题解决

    原因:bash语法错误,例如, 仔细查看发现语句中不能有'<'和'>',删除这两个符号即可: 问题解决!

  9. [hdu1269]城堡迷宫<tarjan强连通分量>

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1269 tarjan算法是oi里很常用的一个算法,在理解方面需要多下一些功夫,如果不行直接记模板也行,因 ...

  10. springboot + aop + Lua分布式限流的最佳实践

    整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 一.什么是限流?为什么要限流? 不知道大家有没有做过帝都的地铁, ...