代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html

批量归一化层实现:https://www.cnblogs.com/xiximayou/p/12720211.html

包括D的平均池化和最大池化:

class PoolingLayer(Layer):
"""A parent class of MaxPooling2D and AveragePooling2D
"""
def __init__(self, pool_shape=(2, 2), stride=1, padding=0):
self.pool_shape = pool_shape
self.stride = stride
self.padding = padding
self.trainable = True def forward_pass(self, X, training=True):
self.layer_input = X batch_size, channels, height, width = X.shape _, out_height, out_width = self.output_shape() X = X.reshape(batch_size*channels, 1, height, width)
X_col = image_to_column(X, self.pool_shape, self.stride, self.padding) # MaxPool or AveragePool specific method
output = self._pool_forward(X_col) output = output.reshape(out_height, out_width, batch_size, channels)
output = output.transpose(2, 3, 0, 1) return output def backward_pass(self, accum_grad):
batch_size, _, _, _ = accum_grad.shape
channels, height, width = self.input_shape
accum_grad = accum_grad.transpose(2, 3, 0, 1).ravel() # MaxPool or AveragePool specific method
accum_grad_col = self._pool_backward(accum_grad) accum_grad = column_to_image(accum_grad_col, (batch_size * channels, 1, height, width), self.pool_shape, self.stride, 0)
accum_grad = accum_grad.reshape((batch_size,) + self.input_shape) return accum_grad def output_shape(self):
channels, height, width = self.input_shape
out_height = (height - self.pool_shape[0]) / self.stride + 1
out_width = (width - self.pool_shape[1]) / self.stride + 1
assert out_height % 1 == 0
assert out_width % 1 == 0
return channels, int(out_height), int(out_width) class MaxPooling2D(PoolingLayer):
def _pool_forward(self, X_col):
arg_max = np.argmax(X_col, axis=0).flatten()
output = X_col[arg_max, range(arg_max.size)]
self.cache = arg_max
return output def _pool_backward(self, accum_grad):
accum_grad_col = np.zeros((np.prod(self.pool_shape), accum_grad.size))
arg_max = self.cache
accum_grad_col[arg_max, range(accum_grad.size)] = accum_grad
return accum_grad_col class AveragePooling2D(PoolingLayer):
def _pool_forward(self, X_col):
output = np.mean(X_col, axis=0)
return output def _pool_backward(self, accum_grad):
accum_grad_col = np.zeros((np.prod(self.pool_shape), accum_grad.size))
accum_grad_col[:, range(accum_grad.size)] = 1. / accum_grad_col.shape[0] * accum_grad
return accum_grad_col

需要注意的是池化层是没有可学习的参数的(如果不利用带步长的卷积来代替池化的作用),还有就是池化层反向传播的过程,这里参考:https://blog.csdn.net/Jason_yyz/article/details/80003271

为了结合代码看直观些,就将其内容摘了下来:

Pooling池化操作的反向梯度传播
CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,假如做2×2的池化,假设那么第l+1层的feature map有16个梯度,那么第l层就会有64个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是需要保证传递的loss(或者梯度)总和不变。根据这条原则,mean pooling和max pooling的反向传播也是不同的。
1、mean pooling
mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的,图示如下 :
mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。
2、max pooling
max pooling也要满足梯度之和不变的原则,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示 :
 

【python实现卷积神经网络】池化层实现的更多相关文章

  1. tensorflow的卷积和池化层(二):记实践之cifar10

    在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...

  2. tensorflow中的卷积和池化层(一)

    在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...

  3. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  8. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  9. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

随机推荐

  1. ERP系统功能及部署方式

    ERP是对企业经营过程中的一些事项进行系统化管理的一种软件,所以ERP软件包含企业经营过程中需要用到的多种功能管理模块,并且ERP软件有两种部署方式.下面一起来了解一下相关的知识吧! ERP系统的功能 ...

  2. 分享CCNTFS小工具,在 macOS 中完全读写、修改、访问Windows NTFS硬盘的文件,无须额外的驱动(原生驱动)更稳定,简单设置即可高速传输外接NTFS硬盘文件

    CCNTFS [ 下载 ] 在 macOS 中完全读写.修改.访问Windows NTFS硬盘的文件,无须额外的驱动(原生驱动)更稳定,安装后进行简单设置即可高速传输外接NTFS硬盘文件,可全程离线使 ...

  3. 新手版超详细LoadRunner12完整安装+汉化过程

      01下载 首先从百度网盘获取到这几个文件(网盘地址会附在文末,过期请联系): 我安装的是社区版+中文汉化过的,使用我只下载了第一个和第三个文件,下面我将讲一下如何安装. 02安装社区版 1.选择“ ...

  4. 两片74门实现的双边沿D触发器

    最近一个项目需要时钟上升沿和下降沿都可以触发的D触发器,但并没有找到符合要求的商品IC.也去看了一些文献,但都是给的示意图然后用分立元件实现的(应该是准备做成IC).这里给出一种最少2个IC就能搭出来 ...

  5. [AI开发]零代码公式让你明白神经网络的输入输出

    这篇文章的标题比较奇怪,网上可能很少类似专门介绍神经网络的输入输出相关文章.在我实际工作和学习过程中,发现很有必要对神经网络的输入和输出做一个比较全面地介绍.跟之前博客一样,本篇文章不会出现相关代码或 ...

  6. In Triangle Test / To Left Test

    2020-01-09 14:51:29 如何高效的判断一个点是否是包含在一个三角形的内部是计算几何里的一个基础问题. In Triangle Test问题也可以用来解决计算几何里的一个基础问题就是 凸 ...

  7. AI领域:如何做优秀研究并写高水平论文?

    来源:深度强化学习实验室 每个人从本科到硕士,再到博士.博士后,甚至工作以后,都会遇到做研究.写论文这个差事.论文通常是对现有工作的一个总结和展示,特别对于博士和做研究的人来说,论文则显得更加重要. ...

  8. 用FME处理物探点表和线表,生成管线和设施

    在项目的数据处理中,客户会提供物探点表和线表. 点表主要包括该点的物探编号.该点的X坐标.Y坐标.点的其他属性 线表主要包括该线的起始点物探编号.终止物探编号.线的其他属性 点表

  9. 模块 re_正则

    模块re_正则 讲正题之前我们先来看一个例子:https://reg.jd.com/reg/person?ReturnUrl=https%3A//www.jd.com/ 这是京东的注册页面,打开页面我 ...

  10. 模块 pillow图像处理

    Pillow概况 PIL是Python的一种图像处理工具. PIL支持大部分的图像格式,高效并强大. 核心库设计用来高速访问基于基于像素的数据存储,给这个通用的图像处理工具提供了坚实的基础. 一.读. ...