Random Forest And Extra Trees
随机森林
我们对使用决策树随机取样的集成学习有个形象的名字–随机森林。
scikit-learn 中封装的随机森林,在决策树的节点划分上,在随机的特征子集上寻找最优划分特征。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=666)
plt.scatter(X[y==0, 0], X[y==0, 1])
plt.scatter(X[y==1, 0], X[y==1, 1])
plt.show()
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=500, random_state=666, oob_score=True)
rf_clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimat 大专栏 Random Forest And Extra Treesors=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
rf_clf.oob_score_
0.892
自定义决策树某些参数
rf_clf2 = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16
, random_state=666, oob_score=True)
rf_clf2.fit(X, y)
rf_clf2.oob_score_
0.906
Extra-Trees
在决策树的节点划分上,使用随机的特征和随机的阈值。
随机性更加极端。
提供了额外的随机性,一直过拟合,但增大了 bias 。
更快的训练速度。
from sklearn.ensemble import ExtraTreesClassifier
et_clf = ExtraTreesClassifier(n_estimators=500, bootstrap=True
, random_state=666, oob_score=True)
et_clf.fit(X, y)
ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion=’gini’,
max_depth=None, max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
et_clf.oob_score_
0.892
集成学习解决回归问题
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
Random Forest And Extra Trees的更多相关文章
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Plotting trees from Random Forest models with ggraph
Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 3. 集成学习(Ensemble Learning)随机森林(Random Forest)
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random ...
- 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)
之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...
- Random Forest Classification of Mushrooms
There is a plethora of classification algorithms available to people who have a bit of coding experi ...
随机推荐
- jenkins-master-slave节点配置总结
一.jenkins分布式简单介绍 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能 二.jenk ...
- DRF认证、自定义认证和权限、自定义权限
源码分析 """ 1)APIView的dispath(self, request, *args, **kwargs) 2)dispath方法内 self.initial( ...
- PyTorch基础——预测共享单车的使用量
预处理实验数据 读取数据 下载数据 网盘链接:https://pan.baidu.com/s/1n_FtZjAswWR9rfuI6GtDhA 提取码:y4fb #导入需要使用的库 import num ...
- [LC] 543. Diameter of Binary Tree
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- the least-squares criterion|Sxx|Sxy|Syy|Regression Equation|Outliers|Influential Observations|curvilinear regression|linear regression
4.2 The Regression Equation Because we could draw many different lines through the cluster of data p ...
- VisualStudioAddin2016Setup.rar
本工具是用于Visual Studio 2010 /2012 的外接程序. 功能不太多,常用代码,引用管理等. 动态图: 下载地址: VisualStudioAddin2016Setup.rar
- 吴裕雄--天生自然 JAVASCRIPT开发学习:对象 实例(2)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- By virtue of|sustain|post |scrape off |stretch|access to|take into account of|exploit|hasten|blur |idle|bored her to|account for|accused of|cruelty
By virtue of this superior quality, this product is often sold out of stockin many areas. 我们的产品因其优秀的 ...
- Android内存调优的一些方法
一.巧妙使用软引用和弱引用 软引用,系统内存紧张时会回收软引用对象,一般用用高速缓存,例如图片缓存,我们一般通过内存缓存图片来提高图片加载速度,但内存吃紧的时候可以通过软引用及时对图片资源回收. 弱引 ...