[题解] LuoguP3321 [SDOI2015]序列统计
感觉这个题挺妙的......
考虑最暴力的\(dp\),令\(f[i][j]\)表示生成大小为\(i\)的序列,积为\(j\)的方案数,这样做是\(O(nm)\)的。
转移就是
\]
后面那个柿子很像卷积?但下标是乘法......好像不那么好卷。
套路的去个对数啥的把他转化成加法?比方说取个ln
那底数怎么确定呢?
我们想把\(1...m-1\)这\(m-1\)个数通过取对数的方法映射到\(0,1,...m-2\)这些不同的数上。
咋办?以原根为底就好辣!(下面默认\(m\)原根是\(g\),\(\log a = \log_{g} a\))。
因为根据定义我们知道\(g^{m-1} \equiv 1\ (mod \ m)\),且\(g^0,g^1,\cdots,g^{m-2}\)是\(m-1\)个不同的数。
所以在上面的\(dp\)转移中,我们令\(A = \log a, B = \log b, C = \log j\),然后再改一下状态,转移就变成了
\]
这样一阶段的转移就是卷积的形式,且转移方式是相同的。
但是\(n\)很大.......因为转移的特殊性,我们可以类似快速幂那样倍增(有点像矩乘?)
具体边界还有一些要注意的地方就看代码吧:
#include <bits/stdc++.h>
using namespace std;
const int N=20100,P=1004535809,gen=3,igen=334845270;
inline int add(int x,int y,int mod=P){
return x+y>=mod?x+y-mod:x+y;
}
inline int sub(int x,int y,int mod=P){
return x-y<0?x-y+mod:x-y;
}
inline int fpow(int x,int y,int mod=P){
int ret=1; for(x%=mod;y;y>>=1,x=1ll*x*x%mod)
if(y&1) ret=1ll*ret*x%mod;
return ret;
}
int rev[N];
void init(int n){
for(int i=0;i<n;i++)
rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);
}
void ntt(int *f,int n,int flg){
for(int i=0;i<n;i++) if(rev[i]<i) swap(f[i],f[rev[i]]);
for(int len=2,k=1;len<=n;len<<=1,k<<=1){
int wn=fpow(flg==1?gen:igen,(P-1)/len);
for(int i=0;i<n;i+=len){
for(int w=1,j=i;j<i+k;j++,w=1ll*w*wn%P){
int tmp=1ll*f[j+k]*w%P;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
}
if(flg==-1){
int inv=fpow(n,P-2);
for(int i=0;i<n;i++) f[i]=1ll*f[i]*inv%P;
}
}
int limit,m,n,X,C;
void mult(int *f,int *g){
static int F[N],G[N];
for(int i=0;i<m-1;i++) F[i]=f[i],G[i]=g[i];
for(int i=m-1;i<limit;i++) F[i]=G[i]=0;
ntt(F,limit,1),ntt(G,limit,1);
for(int i=0;i<limit;i++) F[i]=1ll*F[i]*G[i]%P;
ntt(F,limit,-1);
for(int i=0;i<m-1;i++) f[i]=add(F[i],F[i+m-1]); // 这里挺重要的qwq,因为卷起来后次数是2(m-1)的,又因为m-1一个循环,要加上去
}
int chk(int g){
for(int i=2;i*i<=m-1;i++)
if((m-1)%i==0&&(fpow(g,i,m)==1||fpow(g,(m-1)/i,m)==1)) return 0;
return 1;
}
int getG(){
for(int i=2;;i++) if(chk(i))return i;
}
map<int,int> id;
void getans(int *f,int n,int *ans){
for(ans[id[1]]=1;n;n>>=1,mult(f,f)) // 一开始的时候只有f[0][1]是1
if(n&1) mult(ans,f);
}
int f[N],ans[N];
int main(){
scanf("%d%d%d%d",&n,&m,&X,&C);
limit=1; while(limit<=m*2)limit<<=1; init(limit);
int g=getG(); // m的原根
for(int i=0;i<m-1;i++)id[fpow(g,i,m)]=i;
for(int i=1;i<=C;i++){
int x; scanf("%d",&x),x%=m;
if(x) f[id[x]]=1;
}
getans(f,n,ans);
printf("%d\n",ans[id[X]]);
return 0;
}
[题解] LuoguP3321 [SDOI2015]序列统计的更多相关文章
- 【题解】SDOI2015序列统计
[题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...
- [BZOJ 3992][SDOI2015]序列统计
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 2275 Solved: 1090[Submit][Stat ...
- 【LG3321】[SDOI2015]序列统计
[LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...
- 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂
[BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...
- BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)
3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...
- BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1017 Solved: 466[Submit][Statu ...
- [SDOI2015]序列统计
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...
- 3992: [SDOI2015]序列统计
3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...
- [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1888 Solved: 898[Submit][Statu ...
随机推荐
- USACO 2019 December Contest 随记
Forewords 今年 USACO 的比赛变化挺大的,有部分分了,而且不再是固定十个点了(部分分只说这几个点满足这几个性质,以为十个点的我还高兴了一会,一提交,...),除此之外居然赛后还排名了.这 ...
- 绕过waf
WAF:有硬件和软件类型. 常见的软WAF,常见:安全狗.云锁.云盾.护卫神. SQL注入的绕过: WAF核心机制就是正则匹配. 通过正则匹配,如果符合规则,就拦截. 比如sql注入中and 1=1 ...
- C#.NET解析XML(使用属性控制 XML 序列化)
使用属性可以控制对象的 XML 序列化. 默认情况下,XML 元素名称由类或成员名称确定.在名为 Book 的简单类中,字段 ISBN 将生成 XML 元素标记 <ISBN>,如下面的示例 ...
- java中将图片上传到配置好的ftp服务器上
测试用例: @Test public void testFtp() throws Exception { //1.连接ftp服务器 FTPClient ftpClient = new FTPClien ...
- Day8 - C - Largest Rectangle in a Histogram HDU - 1506
A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...
- 线程与FORK
1.线程锁的问题 需要调用进程线程锁处理函数 prefork-----获取父亲进程锁----在fork掉用之前,目的是为了在子进程中获取到可释放的锁 parentfork----释放父亲进程锁 chi ...
- ls查看所有文件
ls -al 查看所有文件,包括隐藏文件
- firewalld学习--service
service是firewalld中另外一个非常重要的概念.还是拿门卫的例子来解释. 在iptables的时代我们给门卫下达规则时需要告诉他“所有到22号楼的人全部予以放行”.“所有到80号楼的人全部 ...
- Arch系统软件列表
1. 安装统计 2. 安装列表 3. 安装说明 4. 作为依赖项的安装列表 5. 更正 mangaro使用减的方式安装系统.开箱即用的豪华版本,大部分人需要的都有了,同样包括个别用户不需要的,配置方面 ...
- 007-PHP变量和函数相互转换
<?php function write($text) //定义function write()函数 { print($text); //打印字符串 } function writeBold($ ...