题目描述:Checker Challenge
 1000(ms)
 10000(kb)
 20 / 90

Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)

          Column
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------

The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from 1 to 6:

ROW 1 2 3 4 5 6
COLUMN 2 4 6 1 3 5

This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of N). Print the solutions using the column notation described above. Print the the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.

Special note: the larger values of N require your program to be especially efficient. Do not precalculate the value and print it (or even find a formula for it); that's cheating. Work on your program until it can solve the problem properly.

输入

A single line that contains a single integer N (6 <= N <= 13) that is the dimension of the N x N checkerboard.

输出

The first three lines show the first three solutions found, presented as N numbers with a single space between them. The fourth line shows the total number of solutions found.

样例输入

6

样例输出

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提 交

gcc
 
 
 
 
 
1
 
 

解题思路:N皇后问题,一般的DFS会超时,用位运算才可以A。

////// Checker Challenge.cpp : 定义控制台应用程序的入口点。
//////
////
#include "stdafx.h"
////
////
////#include <stdio.h>
////#include <math.h>
////#include <string.h>
////
////int n, ans;
////int res[15],save[15];
////
////struct R
////{
//// int r[15][15];
////
////}R[15];
////
////void DFS(int i)
////{
//// if (i == n)
//// {
//// ans++;
//// if (ans <= 3)
//// {
//// memcpy(R[n].r[ans-1], res, sizeof(res));
//// }
//// return;
//// }
////
//// for (int k = 0; k < n; k++)//遍历所有列
//// {
//// int j;
//// for (j = 0; j < i; j++)//和已经放好的皇后位置比较
//// {
//// if (k == res[j]) break;
//// if (abs(k - res[j]) == i - j) break;
//// }
//// if (j >= i)
//// {
//// res[i] = k;
//// DFS(i + 1);
//// }
//// }
////}
////
////int main()
////{
//// for (n = 0; n <= 13; n++)
//// {
//// ans = 0;
//// DFS(0);
//// save[n] = ans;
////
//// }
//// while (scanf("%d",&n)!=EOF)
//// {
////
//// for (int j = 0; j < 3; j++)
//// {
//// for (int i = 0; i < n; i++)
//// {
//// if (i != n-1) printf("%d ", R[n].r[j][i] + 1);
////
//// else printf("%d\n", R[n].r[j][i] + 1);
//// }
//// }
//// printf("%d\n", save[n]);
////
//// }
////} //简化的思想:
//用位运算代替for循环遍历每个皇后的位置
//用垂直、对角线、斜对角线的位运算 /*整个逻辑:
//1.求将要放入皇后的位置
//2.更新可放皇后的位置
//3.DFS循环*/ #include <stdio.h> int n,ans,uplimit,res[]; int binary2(int num)
{
int ans = ;
while (num)
{
num = num >> ;
ans++;
}
return ans;
} void DFS(int i,int vertical, int diagonal, int antidiagonal)
{
if (i >= n)
{
ans++;
if (ans <=)
{
//输出结果
for (int i = ; i < n; i++)
{
if (i != n-) printf("%d ", res[i]);
else printf("%d\n", res[i]);
}
}
return;
}
int avail = uplimit & (~(vertical | diagonal | antidiagonal));
while (avail)
{
int pos = avail & (-avail);
avail = avail - pos;
res[i] = binary2(pos);
DFS(i + ,vertical + pos, (diagonal + pos) << , (antidiagonal + pos) >> );
} } int main()
{
while (scanf("%d", &n) != EOF)
{
ans = ;
uplimit = ( << n) - ;
DFS(, , , );
printf("%d\n", ans);
}
return ;
}

ACM-Checker Challenge的更多相关文章

  1. USACO1.5 Checker Challenge(类n皇后问题)

    B - B Time Limit:1000MS     Memory Limit:16000KB     64bit IO Format:%lld & %llu   Description E ...

  2. USACO 6.5 Checker Challenge

    Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...

  3. 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)

    本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...

  4. TZOJ 3522 Checker Challenge(深搜)

    描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...

  5. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  6. Checker Challenge跳棋的挑战(n皇后问题)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  7. USACO training course Checker Challenge N皇后 /// oj10125

    ...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用  m+i 为从左至右第 m+i 条副对角线 vis[1] ...

  8. N皇后问题2

    Description Examine the  checkerboard below and note that the six checkers are arranged on the board ...

  9. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

随机推荐

  1. map的查询和修改方法

    1:map查询的方法 package com.cn.util; import java.util.ArrayList; import java.util.HashMap; import java.ut ...

  2. MFC CListCtrl 显示bmp图片

    m_ListCtrl.SetExtendedStyle(m_ListCtrl.GetExtendedStyle()| LVS_EX_SUBITEMIMAGES | LVS_EX_GRIDLINES); ...

  3. 基于Phoenix对HBase建索引

    参考: Phoenix与HBase集成进行数据分析 HBase查询速度慢原因排查 操作1,执行查询,如下: : jdbc:phoenix:node3::/hbase> SELECT * FROM ...

  4. Ajax--XMLHttpRequest的使用

    1.创建XMLHttpRequest对象(实现方法不统一): --IE把XMLHttpRequest实现为一个ActiveX对象: --其他浏览器(Firefox.Chrome等)把它实现为一个本地的 ...

  5. sklearn中实现多分类任务(OVR和OVO)

    sklearn中实现多分类任务(OVR和OVO) 1.OVR和OVO是针对一些二分类算法(比如典型的逻辑回归算法)来实现多分类任务的两种最为常用的方式,sklearn中专门有其调用的函数,其调用过程如 ...

  6. POJ1471 Tree/洛谷P4178 Tree

    Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...

  7. C语言常用函数

    一.数学函数 调用数学函数时,要求在源文件中包下以下命令行: #include <math.h> 函数原型说明 功能 返回值 说明 int abs( int x) 求整数x的绝对值 计算结 ...

  8. 转linux top 命令

    top 命令 每天一个linux命令(44):top命令 非常好的一篇博文,这位作者<每天一个linux命令>系列写的非常棒! 关于top的cpu使用率超过100% 在环境中会出现这种现象 ...

  9. 第3节 sqoop:6、sqoop的数据增量导入和数据导出

    增量导入 在实际工作当中,数据的导入,很多时候都是只需要导入增量数据即可,并不需要将表中的数据全部导入到hive或者hdfs当中去,肯定会出现重复的数据的状况,所以我们一般都是选用一些字段进行增量的导 ...

  10. Java笔记--枚举&注解

    1.自定义枚举类的实现,例: class Season{ //1,提供类的属性,声明为rivate final private final String name; private final Str ...