[区间+线性dp]数字游戏
题目描述
丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共\(n\)个),你要按顺序将其分为\(m\)个部分,各部分内的数字相加,相加所得的\(m\)个结果对\(10\)取模后再相乘,最终得到一个数\(k\)。游戏的要求是使你所得的\(k\)最大或者最小。
例如,对于下面这圈数字(\(n=4,m=2\)):
要求最小值时,\(((2−1) mod 10)×((4+3) mod 10)=1×7=7\),要求最大值时,为\(((2+4+3) mod 10)×(−1 mod 10)=9×9=81\)。特别值得注意的是,无论是负数还是正数,对\(10\)取模的结果均为非负值。
丁丁请你编写程序帮他赢得这个游戏。
输入格式
输入文件第一行有两个整数,\(n(1≤n≤50)\)和\(m(1≤m≤9)\)。以下\(n\)行每行有个整数,其绝对值\(≤10^4\),按顺序给出圈中的数字,首尾相接。
输出格式
输出文件有\(2\)行,各包含\(1\)个非负整数。第\(1\)行是你程序得到的最小值,第\(2\)行是最大值。
输入 #1
4 2
4
3
-1
2
输出 #1
7
81
分析
对于这种数据,我这种蒟蒻都能看出来,相信很多dalao看到都能一眼就看出来要把环换成链,这是第一个思想。
然后第二个思想就是取模的问题,由于负数取模应为正,假设这个数为\(n\),我们就可以写一个函数来进行取模运算,也就是\((n\%10+10)\%10\),为什么要这么处理呢,这样就可以把负数取完模变为正,而对于正数就毫无影响,这是一个比较巧妙也重要的处理。
第三个就是前缀和,因为要求和,所以利用前缀和就可以很大的提高效率,思想也会比较明了。
根据dp思想,我们就可以进行状态转移。开一个\(dp\)数组,\(dp[i][j][len]\)代表从\(i\)到\(j\)分成\(len\)段的大小,依次枚举段数,左右端点,和断点,每一次从\(i\)到\(j\)都是由上一个从\(i\)到断点\(c\)分成\(len-1\)段的状态转移而来,转移的过程就是乘上从\(j\)到\(c\)的前缀和取模。我们令取模的函数为\(Mod\),那么状态转移方程如下:(最大值和最小值一样,唯一要注意的是,最大值初始为\(0\),最小值每一次转移要改为\(0x3f3f3f3f\))
f2[l][r][len] = max(f2[l][r][len],f2[l][k][len-1]*Mod(sum[r]-sum[k]));\]
最终再从头到尾扫一遍得结果。
代码
#include<bits/stdc++.h>
using namespace std;
int Mod(int x){//取模优化
return (x%10+10)%10;
}
int n,m;
const int maxn = 105;
int sum[maxn],a[maxn];
int f1[maxn][maxn][10],f2[maxn][maxn][10];
int main(){
cin>>n>>m;
for(int i=1;i<=n;++i){
cin>>a[i];
a[i+n] = a[i];//环变链
}
for(int i=1;i<=2*n;++i){//求前缀和
sum[i] = sum[i-1]+a[i];
}
for(int i=1;i<=2*n;++i){//初始化,分1段时的值
for(int j=1;j<=2*n;++j){
f1[i][j][1] = f2[i][j][1] = Mod(sum[j] - sum[i-1]);
}
}
for(int len=2;len<=m;++len){//枚举分成多少段
for(int l=1;l<=n;++l){//枚举左端点
for(int r=l+len-1;r<=l+n-1;++r){//枚举右端点
f1[l][r][len]=0x3f3f3f3f;//求最小值初始化
for(int k=l+len-2;k<r;++k){//枚举断点
f1[l][r][len] = min(f1[l][r][len],f1[l][k][len-1]*Mod(sum[r]-sum[k]));
f2[l][r][len] = max(f2[l][r][len],f2[l][k][len-1]*Mod(sum[r]-sum[k]));
}
}
}
}
int Max = f2[1][n][m];
int Min = f1[1][n][m];
for(int i=1;i<=n;++i){//从头到尾扫一边
Max = max(Max,f2[i][i+n-1][m]);
Min = min(Min,f1[i][i+n-1][m]);
}
cout<<Min<<endl<<Max<<endl;
//Vocanda
}
[区间+线性dp]数字游戏的更多相关文章
- 洛谷 P1043 数字游戏 区间DP
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 【dp】数字游戏&寒假祭
区间DP 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按 ...
- NOIP2003pj数字游戏[环形DP]
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- codevs 1085 数字游戏 dp或者暴搜
1085 数字游戏 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单 ...
- codevs1085数字游戏(环形DP+划分DP )
1085 数字游戏 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单, ...
- 【线性DP】数字三角形
题目链接 原题链接 题目描述 给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大. 7 3 ...
- XDU 1161 - 科协的数字游戏II
Problem 1161 - 科协的数字游戏II Time Limit: 1000MS Memory Limit: 65536KB Difficulty: Total Submit: 112 ...
随机推荐
- js基本语法和数据类型
三种引入方式: 使用JavaScript:前缀构建执行JavaScript代码 使用<script></script>标签来包含JavaScript代码 <body> ...
- Java实现蓝桥杯 历届试题 合根植物
问题描述 w星球的一个种植园,被分成 m * n 个小格子(东西方向m行,南北方向n列).每个格子里种了一株合根植物. 这种植物有个特点,它的根可能会沿着南北或东西方向伸展,从而与另一个格子的植物合成 ...
- Java实现 蓝桥杯 算法训练 Balloons in a Box
试题 算法训练 Balloons in a Box 问题描述 你要写一个程序,使得能够模拟在长方体的盒子里放置球形的气球. 接下来是模拟的方案.假设你已知一个长方体的盒子和一个点集.每一个点代表一个可 ...
- Java实现 LeetCode 79 单词搜索
79. 单词搜索 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中"相邻"单元格是那些水平相邻或垂直相邻的单元格. ...
- Java实现 洛谷 P1567 统计天数
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...
- Java实现行列递增矩阵的查找
1 问题描述 在一个m行n列的二维数组中,每一行都按照从左到右递增的顺序排列,每一列都按照从上到下递增的顺序排列.现在输入这样的一个二维数组和一个整数,请完成一个函数,判断数组中是否含有该整数. 2 ...
- java实现手机尾号评分
30年的改革开放,给中国带来了翻天覆地的变化.2011全年中国手机产量约为11.72亿部.手机已经成为百姓的基本日用品! 给手机选个好听又好记的号码可能是许多人的心愿.但号源有限,只能辅以有偿选号的方 ...
- 带你学够浪:Go语言基础系列 - 8分钟学控制流语句
★ 文章每周持续更新,原创不易,「三连」让更多人看到是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) " 对于一般的语言使用者来说 ,20% ...
- 根据现有Bitmap生成相同图案指定大小的新Bitmap
通过一张现有的Bitmap,画出一张同样的但是大小使我们指定的Bitmap 需求:直接createBitmap的话不允许生成的bitmap的宽高大于原始的,因此需要特定方法来将一张Bitmap的大小进 ...
- Redis的内存和实现机制
1. Reids内存的划分 数据 内存统计在used_memory中 进程本身运行需要内存 Redis主进程本身运行需要的内存占用,代码.常量池等 缓冲内存,客户端缓冲区.复制积压缓冲区.AOF缓冲区 ...