[区间+线性dp]数字游戏
题目描述
丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共\(n\)个),你要按顺序将其分为\(m\)个部分,各部分内的数字相加,相加所得的\(m\)个结果对\(10\)取模后再相乘,最终得到一个数\(k\)。游戏的要求是使你所得的\(k\)最大或者最小。
例如,对于下面这圈数字(\(n=4,m=2\)):

要求最小值时,\(((2−1) mod 10)×((4+3) mod 10)=1×7=7\),要求最大值时,为\(((2+4+3) mod 10)×(−1 mod 10)=9×9=81\)。特别值得注意的是,无论是负数还是正数,对\(10\)取模的结果均为非负值。
丁丁请你编写程序帮他赢得这个游戏。
输入格式
输入文件第一行有两个整数,\(n(1≤n≤50)\)和\(m(1≤m≤9)\)。以下\(n\)行每行有个整数,其绝对值\(≤10^4\),按顺序给出圈中的数字,首尾相接。
输出格式
输出文件有\(2\)行,各包含\(1\)个非负整数。第\(1\)行是你程序得到的最小值,第\(2\)行是最大值。
输入 #1
4 2
4
3
-1
2
输出 #1
7
81
分析
对于这种数据,我这种蒟蒻都能看出来,相信很多dalao看到都能一眼就看出来要把环换成链,这是第一个思想。
然后第二个思想就是取模的问题,由于负数取模应为正,假设这个数为\(n\),我们就可以写一个函数来进行取模运算,也就是\((n\%10+10)\%10\),为什么要这么处理呢,这样就可以把负数取完模变为正,而对于正数就毫无影响,这是一个比较巧妙也重要的处理。
第三个就是前缀和,因为要求和,所以利用前缀和就可以很大的提高效率,思想也会比较明了。
根据dp思想,我们就可以进行状态转移。开一个\(dp\)数组,\(dp[i][j][len]\)代表从\(i\)到\(j\)分成\(len\)段的大小,依次枚举段数,左右端点,和断点,每一次从\(i\)到\(j\)都是由上一个从\(i\)到断点\(c\)分成\(len-1\)段的状态转移而来,转移的过程就是乘上从\(j\)到\(c\)的前缀和取模。我们令取模的函数为\(Mod\),那么状态转移方程如下:(最大值和最小值一样,唯一要注意的是,最大值初始为\(0\),最小值每一次转移要改为\(0x3f3f3f3f\))
f2[l][r][len] = max(f2[l][r][len],f2[l][k][len-1]*Mod(sum[r]-sum[k]));\]
最终再从头到尾扫一遍得结果。
代码
#include<bits/stdc++.h>
using namespace std;
int Mod(int x){//取模优化
return (x%10+10)%10;
}
int n,m;
const int maxn = 105;
int sum[maxn],a[maxn];
int f1[maxn][maxn][10],f2[maxn][maxn][10];
int main(){
cin>>n>>m;
for(int i=1;i<=n;++i){
cin>>a[i];
a[i+n] = a[i];//环变链
}
for(int i=1;i<=2*n;++i){//求前缀和
sum[i] = sum[i-1]+a[i];
}
for(int i=1;i<=2*n;++i){//初始化,分1段时的值
for(int j=1;j<=2*n;++j){
f1[i][j][1] = f2[i][j][1] = Mod(sum[j] - sum[i-1]);
}
}
for(int len=2;len<=m;++len){//枚举分成多少段
for(int l=1;l<=n;++l){//枚举左端点
for(int r=l+len-1;r<=l+n-1;++r){//枚举右端点
f1[l][r][len]=0x3f3f3f3f;//求最小值初始化
for(int k=l+len-2;k<r;++k){//枚举断点
f1[l][r][len] = min(f1[l][r][len],f1[l][k][len-1]*Mod(sum[r]-sum[k]));
f2[l][r][len] = max(f2[l][r][len],f2[l][k][len-1]*Mod(sum[r]-sum[k]));
}
}
}
}
int Max = f2[1][n][m];
int Min = f1[1][n][m];
for(int i=1;i<=n;++i){//从头到尾扫一边
Max = max(Max,f2[i][i+n-1][m]);
Min = min(Min,f1[i][i+n-1][m]);
}
cout<<Min<<endl<<Max<<endl;
//Vocanda
}
[区间+线性dp]数字游戏的更多相关文章
- 洛谷 P1043 数字游戏 区间DP
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 【dp】数字游戏&寒假祭
区间DP 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按 ...
- NOIP2003pj数字游戏[环形DP]
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- codevs 1085 数字游戏 dp或者暴搜
1085 数字游戏 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单 ...
- codevs1085数字游戏(环形DP+划分DP )
1085 数字游戏 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单, ...
- 【线性DP】数字三角形
题目链接 原题链接 题目描述 给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大. 7 3 ...
- XDU 1161 - 科协的数字游戏II
Problem 1161 - 科协的数字游戏II Time Limit: 1000MS Memory Limit: 65536KB Difficulty: Total Submit: 112 ...
随机推荐
- Linux(二) 系统远程访问
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 1. Why?为什么需要远程访问? 人和人之间对话有两种方式,一种是面对面直接交谈,另一种是打电话. 我 ...
- Protocol Buffers工作原理
这里记录一下学习与使用Protocol Buffer的笔记,优点缺点如何使用这里不再叙述,重点关注与理解Protocol Buffers的工作原理,其大概实现. 我们经常使用Protocol Buff ...
- Java实现 LeetCode 812 最大三角形面积 (暴力)
812. 最大三角形面积 给定包含多个点的集合,从其中取三个点组成三角形,返回能组成的最大三角形的面积. 示例: 输入: points = [[0,0],[0,1],[1,0],[0,2],[2,0] ...
- Java实现 LeetCode 796 旋转字符串 (水题)
796. 旋转字符串 给定两个字符串, A 和 B. A 的旋转操作就是将 A 最左边的字符移动到最右边. 例如, 若 A = 'abcde',在移动一次之后结果就是'bcdea' .如果在若干次旋转 ...
- Java实现 LeetCode 756 金字塔转换矩阵(DFS)
756. 金字塔转换矩阵 现在,我们用一些方块来堆砌一个金字塔. 每个方块用仅包含一个字母的字符串表示. 使用三元组表示金字塔的堆砌规则如下: 对于三元组(A, B, C) ,"C" ...
- Java实现 LeetCode 680 验证回文字符串 Ⅱ(暴力)
680. 验证回文字符串 Ⅱ 给定一个非空字符串 s,最多删除一个字符.判断是否能成为回文字符串. 示例 1: 输入: "aba" 输出: True 示例 2: 输入: " ...
- Java实现 蓝桥杯 算法提高 因式分解
算法提高 8-1因式分解 时间限制:10.0s 内存限制:256.0MB 提交此题 问题描述 设计算法,用户输入合数,程序输出若个素数的乘积.例如,输入6,输出23.输入20,输出22*5. 样例 与 ...
- c#发布补丁
日常开发维护项目中,可能会遇到发布后出现bug,或者忘记改配置文件等等问题,这个时候,可能就需要重新进行下发布,有的开发小伙伴可能会把编译后的代码文件整个替换.这样做虽然也可以实现发布,但是有几个弊端 ...
- (十)HTTP.sys远程代码执行
01 漏洞描述 上篇文章介绍了Host头攻击,今天我们讲一讲HTTP.sys远程代码执行漏洞. HTTP.sys是Microsoft Windows处理HTTP请求的内核驱动程序,为了优化IIS服务器 ...
- mysql基础-数据库初始化操作必要步骤和客户端工具使用-记录(二)
0x01 mysql启动时,读取配置文件的顺序 Default options are read from the following files in the given order:/etc/my ...