(Clairaut 定理)设 $E$ 是 $\mathbf{R}^n$ 的开子集合,并设 $f:\mathbf{E}\to \mathbf{R}^{m}$ 是 $E$ 上的二次连续可微函数.那么对于一切$x_0\in E$ 和 $1\leq i,j\leq n$,
  \begin{align*}
    \frac{\partial }{\partial x_j}\frac{\partial f}{\partial
      x_i}(x_0)= \frac{\partial }{\partial x_i}\frac{\partial
      f}{\partial x_j}(x_0)
  \end{align*}

证明:这个定理的本质是二重极限的顺序问题,在题设条件下,交换极限的顺序对结果无影响.我们依照定义来证明.不妨设 $j<i$.设 $x_0$ 在 $\mathbf{R}^n$ 中的坐标
  为$(a_1,a_2,\cdots,a_n)$.则
  \begin{equation}
    \label{eq:8.00}
    \frac{\partial f}{\partial x_i}(x_0)=\lim_{\Delta x_{i}\to 0;\Delta
      x_{i}\neq 0}\frac{f(a_1,\cdots,a_i+\Delta
      x_{i},\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_{i}}.
  \end{equation}
易得
  \begin{align*}
    &\frac{\partial }{\partial x_j}\frac{\partial f}{\partial
      x_i}(x_0)\\&=\lim_{\Delta x_j\to 0;\Delta x_j\neq
      0}\lim_{\Delta x_i\to 0;\Delta x_i\neq
      0}\frac{\frac{f(a_1,\cdots,a_j+\Delta x_j,\cdots,a_i+\Delta
      x_i,\cdots,a_n)-f(a_1,\cdots,a_j+\Delta
      x_j,\cdots,a_i,\cdots,a_n)}{\Delta x_i}-\frac{f(a_1,\cdots,a_j,\cdots,a_i+\Delta
      x_i,\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_i}}{\Delta x_j}.
  \end{align*}
且易得
\begin{align*}
    &\frac{\partial }{\partial x_i}\frac{\partial f}{\partial
      x_j}(x_0)\\&=\lim_{\Delta x_i\to 0;\Delta x_i\neq
      0}\lim_{\Delta x_j\to 0;\Delta x_j\neq
      0}\frac{\frac{f(a_1,\cdots,a_j+\Delta x_j,\cdots,a_i+\Delta
      x_i,\cdots,a_n)-f(a_1,\cdots,a_j+\Delta
      x_j,\cdots,a_i,\cdots,a_n)}{\Delta x_i}-\frac{f(a_1,\cdots,a_j,\cdots,a_i+\Delta
      x_i,\cdots,a_n)-f(a_1,\cdots,a_i,\cdots,a_n)}{\Delta x_i}}{\Delta x_j}.
  \end{align*}
结合微分中值定理,再加上二阶偏导数连续,因此极限可以交换顺序,而结果值不变.得证.

Clairaut 定理 证明的更多相关文章

  1. Wilson定理证明

    Wilson定理证明 就是那个\((p-1)! \equiv -1 \pmod{p}\),\(p\)是一个素数. Lemma A \(\mathbb{Z}_p\)可以去掉一个零元变成一个群. 即\(\ ...

  2. tensorflow deepmath:基于深度学习的自动化数学定理证明

    Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google ...

  3. 数学定理证明机械化的中国学派(II)

    所谓"学派"是指:存在一帮人,具有同样或接近的学术观点或学术立场,採用某种特定的"方法"(或途径),在一个学术方向上共同开展工作.而且做出了相当有迎影响的学术成 ...

  4. Hammersley-Clifford定理证明

    Proof of Hammersley-Clifford TheoremProof of Hammersley-Clifford Theorem依赖知识定义1定义2证明过程反向证明(吉布斯分布=> ...

  5. 【Learning】最小点覆盖(二分图匹配) 与Konig定理证明

    (附一道例题) Time Limit: 1000 ms   Memory Limit: 128 MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小 ...

  6. [自用]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...

  7. [自用]多项式类数学相关(定理&证明&板子)

    写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的 ...

  8. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  9. [总结]多项式类数学相关(定理&证明&板子)

    目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代 ...

随机推荐

  1. DispatcherServlet(2)_HandlerMapping

    HandlerMapping_xmind SpringMVC默认提供的HandlerMapping BeanNameUrlHandlerMapping SimpleUrlHandlerMapping ...

  2. maven学习(三)-使用maven来创建项目

    转自https://www.cnblogs.com/xdp-gacl/p/4240930.html maven作为一个高度自动化构建工具,本身提供了构建项目的功能,下面就来体验一下使用maven构建项 ...

  3. linux搭建mariadb,windows2008搭建iis+php+wordpress

    centos ip:192.168.101 windows ip :192.168.102 centos配置: [root@ml ~]# yum -y install mariadb-server # ...

  4. 吴裕雄--天生自然 JAVASCRIPT开发学习:语句

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. spring boot rest 接口集成 spring security(2) - JWT配置

    Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...

  6. docker修改存储路径(转载)

    系统盘只有40G,有时docker镜像会占据大量的存储空间,于是想把docker的默认存储位置改成挂载的数据盘.docker的默认存储位置未为:/var/lib/docker 更改docker的默认存 ...

  7. python学习---format、当前时间

    1.数字格式化   format <  :左对齐 >  :右对齐 a = “随机数是{:>4d}”.format(1)       结果是0001 2.当前时间 import dat ...

  8. Maven:A cycle was detected in the build path of project 'xxx'. The cycle consists of projects {xx}

    以下这个错误是在Eclipse中导入多个相互依赖的工程时出现的“循环依赖问题”:A cycle was detected in the build path of project 'xxx'. The ...

  9. sychronized和lock和区别

    syschronized和lock的区别 synchronized的锁可重入.不可中断.非公平,而Lock锁可重入.可中断.可公平.绑定多个Condition.(两者皆可重入)synchronized ...

  10. Cracking Digital VLSI Verification Interview 第一章

    目录 Digital Logic Design Number Systems, Arithmetic and Codes Basic Gates Combinational Logic Circuit ...