[hdu5439 Aggregated Counting]公式化简,预处理
题意:按下列规则生成一组序列,令f(n)为n这个数在序列中出现的最后一个位置,求f(f(n))的值。
1. First, write down 1, 2 on a paper.
2. The 2nd number is 2, write down 2 2’s (including the one originally on the paper). The paper thus has 1, 2, 2 written on it.
3. The 3rd number is 2, write down 2 3’s. 1, 2, 2, 3, 3 is now shown on the paper.
4. The 4th number is 3, write down 3 4’s. 1, 2, 2, 3, 3, 4, 4, 4 is now shown on the paper.
5. The procedure continues indefinitely as you can imagine. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, . . . .
思路:令原序列为a,根据定义和序列的生成规则可以推出:
- f(n)等于a的前n项和
- f(n)是n这个数在a中出现的最后一个位置
f(f(n))的含义为:a的前m项和,m为n在a中最后出现的位置。所以f(f(n))的计算式可以写成:
f(f(n))=1 + (2+3)*2 + (4+5)*3 + (6+7+8)*4 + ... + (...+n)*t
t是远小于n的,大概为几十万的样子,剩下的就不多说了。。。
#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<" ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ const int maxn = 1e9 + ;
const int mod = maxn; int seq[] = {, , , };
ll sum[] = {, , , }, ans[];
int total = ;
void init() {
for (int i = ; ; i ++) {
for (int j = ; j < seq[i]; j ++) {
seq[++ total] = i;
sum[total] = sum[total - ] + seq[total];
}
if (sum[total] > maxn) break;
}
ans[] = ;
for (int i = ; i < total; i ++) {
ans[i] = (ans[i - ] + (sum[i] + sum[i] - seq[i] + ) * seq[i] / % mod * i) % mod;
}
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int T, n;
init();
cin >> T;
while (T --) {
cin >> n;
int p = upper_bound(sum + , sum + total, n) - sum - ;
cout << (ans[p] + (sum[p] + + n) * (n - sum[p]) / % mod * (p + )) % mod << endl;
}
}
[hdu5439 Aggregated Counting]公式化简,预处理的更多相关文章
- Aggregated Counting(找规律 + 预处理)
Aggregated Counting 转 : https://blog.csdn.net/cq_phqg/article/details/48417111 题解: 可以令n=1+2+2+3+3+.. ...
- Hdu 5439 Aggregated Counting (2015长春网络赛 ACM/ICPC Asia Regional Changchun Online 找规律)
题目链接: Hdu 5439 Aggregated Counting 题目描述: 刚开始给一个1,序列a是由a[i]个i组成,最后1就变成了1,2,2,3,3,4,4,4,5,5,5.......,最 ...
- [zoj3813]Alternating Sum 公式化简,线段树
题意:给一个长度不超过100000的原串S(只包含数字0-9),令T为将S重复若干次首尾连接后得到的新串,有两种操作:(1)修改原串S某个位置的值(2)给定L,R,询问T中L<=i<=j& ...
- HDU 5439 Aggregated Counting
题目大意: 由1开始不断往数组中添加数 就是按照当前所在位置所在的数表示的个数添加这个数目的数 1 2 2 3 3 后面因为要填4,而4号位置为3,说明之后要填3个4 问题就是给定一个n,找到n出现的 ...
- UVALive-8079 Making a Team 排列组合公式化简
题目链接:https://cn.vjudge.net/problem/UVALive-8079 题意 n个人组队,队伍人数小于等于n,每个队伍需要4个不同的职务的领导. 问这n个人可以组成多少队? n ...
- [hdu5448 Marisa’s Cake]多边形面积,公式化简
题意:给一个凸多边形,求任选若干点形成的多边形的面积和. 思路: 按一定方向(顺时针或逆时针)对多边形的顶点进行编号,则多边形的面积计算公式为:f1 x f2 + f2 x f3 + ... fn-1 ...
- [HDOJ5439]Aggregated Counting(乱搞)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5439 题意:按规则构造一个数列a a(1)=1 a(2)=2 a(2)=2 -------> 写两个 ...
- HDU 4565 So Easy!(公式化简+矩阵)
转载:http://www.klogk.com/posts/hdu4565/ 这里写的非常好,看看就知道了啊. 题意很easy.a,b,n都是正整数.求 Sn=⌈(a+b√)n⌉%m,(a−1)2&l ...
- HDU-4035-概率dp-期望-公式化简
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Submis ...
随机推荐
- 美化你的终端利器Iterm2
Iterm2是特别好用的一款终端,支持自定义字体和高亮,让日常开发,充满愉悦. 安装iterm2(mac版) brew tap caskroom/cask brew cask install iter ...
- Docker常用命令--ps/attach/run
ps查看container 若查看正在运行的container docker ps 查看所有的container docker ps -a run启动容器 第一次启动container docker ...
- java文件上传、下载、图片预览
多文件保存到本地: @ResponseBody @RequestMapping(value = "/uploadApp",produces = { "applica ...
- 调用sleep后,我做了一个噩梦
sleep系统调用 我是一个线程,生活在Linux帝国.一直以来辛勤工作,日子过得平平淡淡,可今天早上发生了一件事让我回想起来都后怕. 早上,我还是如往常一样执行着人类编写的代码指令,不多时走到了一个 ...
- jmeter事务控制器
jmeter事务控制器常用于压力测试时如果一个功能包括多个请求时,需要测试这个功能的压力情况,则需要把多个请求放到一个事务控制器里面
- beanshell 常用的内置变量与函数
官方详细文档:https://github.com/beanshell/beanshell/wiki log:用来记录日志文件 log.info("jmeter"); vars - ...
- Windows 上安装msql库安装(基于8.0.19免安装版)
一.进入官网进行下载mysql程序包: https://dev.mysql.com/downloads/mysql/ 二.解压缩 解压文件夹到指定目录,我放在 D:\mysql-8.0.19-winx ...
- C# WCF之用接口创建服务契约、部署及客户端连接
服务契约描述了暴露给外部的类型(接口或类).服务所支持的操作.使用的消息交换模式和消息的格式.每个WCF服务必须实现至少一个服务契约.使用服务契约必须要引用命名空间System.ServiceMode ...
- react: typescript system params optimize
1.system-params-service import paramCache from "../common/param-cache" import RequestPromi ...
- Java 多线程 -- 协作模型:生产消费者实现方式二:信号灯法
使用信号灯法实现生产消费者模式需要借助标志位. 下面以演员表演,观众观看电视为列,写一个demo 同一资源 电视: //同一资源 电视 class Tv { String voice; // 信号灯 ...