数值计算方法实验之Hermite 多项式插值 (Python 代码)
一、实验目的
在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≈P(x).
二、实验原理
三、实验内容
求f(x)=x4在[0,2]上按5个等距节点确定的Hermite插值多项式.
四、实验程序
import numpy as np
from sympy import *
import matplotlib.pyplot as plt def f(x):
return x ** 4 def ff(x): # f[x0, x1, ..., xk]
ans = 0
for i in range(len(x)):
temp = 1
for j in range(len(x)):
if i != j:
temp *= (x[i] - x[j])
ans += f(x[i]) / temp
return ans def draw(L, newlabel= 'Lagrange插值函数'):
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = np.linspace(0, 2, 100)
y = f(x)
Ly = []
for xx in x:
Ly.append(L.subs(n, xx))
plt.plot(x, y, label='原函数')
plt.plot(x, Ly, label=newlabel)
plt.xlabel('x')
plt.ylabel('y')
plt.legend() plt.savefig('1.png')
plt.show() def lossCal(L):
x = np.linspace(0, 2, 101)
y = f(x)
Ly = []
for xx in x:
Ly.append(L.subs(n, xx))
Ly = np.array(Ly)
temp = Ly - y
temp = abs(temp)
print(temp.mean()) def calM(P, x):
Y = n ** 4
dfP = diff(P, n)
return solve(Y.subs(n, x[0]) - dfP.subs(n, x[0]), [m,])[0] if __name__ == '__main__':
x = np.array(range(11)) - 5
y = f(x) n, m = symbols('n m')
init_printing(use_unicode=True) P = f(x[0])
for i in range(len(x)):
if i != len(x) - 1:
temp = ff(x[0:i + 2])
else:
temp = m
for j in x[0:i + 1]:
temp *= (n - j)
P += temp
P = expand(P) P = P.subs(m, calM(P, x))
draw(P, newlabel='Hermite插值多项式')
lossCal(P)
五、运算结果
数值计算方法实验之Hermite 多项式插值 (Python 代码)的更多相关文章
- 数值计算方法实验之newton多项式插值 (Python 代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- 数值计算方法实验之Lagrange 多项式插值 (Python 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 数值计算方法实验之Newton 多项式插值(MATLAB代码)
一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...
- 数值计算方法实验之按照按三弯矩方程及追赶法的三次样条插值 (MATLAB 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 拉格朗日插值Python代码实现
1. 数学原理 对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个lj(x)为拉格朗日基本多项式(或称插值基函数),其表 ...
- 数值计算方法 | C语言实现几个数值计算方法(实验报告版)
目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...
- 数值分析:Hermite多项式
http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- 【剑指Offer】数值的整数次方 解题报告(Python)
[剑指Offer]数值的整数次方 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-interviews ...
随机推荐
- UVA - 10200 Prime Time 关于 double类型 卡精度
题意: 给定一个区间,a到b, n在区间内,有一个计算素数的公式,n*n+n+41,将n带进去可以得出一个数字.但是这个公式可能不准确,求出这个公式在这个区间内的准确率. 直接模拟就好了,不过要 注意 ...
- Jmeter4.0接口测试之断言实战(六)
在接口测试用例中得有断言,没有断言的接口用例是无效的,一个接口的断言有三个层面,一个是HTTP状态码的断言,另外一个是业务状态码的断言,最后是某一接口请求后服务端响应数据的断言.在Jmeter中增加断 ...
- 【Redis】入门
Redis概述 Redis常用数据结构 Redis删除过期数据策略 Redis内存淘汰机制 Redis持久化机制 缓存问题及解决方案 Redis概述 Redis是一个开源的.基于内存的数据结构存储器 ...
- django中 对Mysql数据库的建表
Django操作Mysql数据库: 1.1 在settings中,配置数据库相关参数,所以无需修改,这里我们看一下: DATABASES = { 'default': { # 这里可以指定使用的数据库 ...
- 模块 face_recognition 人脸识别
face_recognition 人脸识别 api 说明 1 load_image_file 将img文件加载到numpy 数组中 2 face_locations 查找图像中所有面部和所有面部特征的 ...
- git本地库中配置多个sshkey
一般来说正常情况下本地库中配置一个sshkey就可以适应开发了,但是生活中总会有那么一点点的小惊喜.由于公司业务的发展,现在需要本地库中再配置一个sshkey,下面记录下配置的全过程: 生成并添加第一 ...
- Hystrix 使用手册 | 官方文档翻译
由于时间关系可能还没有翻译全,但重要部分已基本包含 本人水平有限,如有翻译不当,请多多批评指出,我一定会修正,谢谢大家.有关 ObservableHystrixCommand 我有的部分选择性忽略了, ...
- Activiti网关--包含网关
1.什么是包含网关 包含网关可以看做是排他网关和并行网关的结合体:和排他网关一样,你可以在外出顺序流上定义条件,包含网关会解析它们:但是主要的区别是包含网关可以选择多于一条顺序流,这和并行网关一样,包 ...
- 求你了,别再问我Zookeeper如何实现分布式锁了!!!
导读 真是有人(锁)的地方就有江湖(事务),今天不谈江湖,来撩撩人. 分布式锁的概念.为什么使用分布式锁,想必大家已经很清楚了.前段时间作者写过Redis是如何实现分布式锁,今天这篇文章来谈谈Zook ...
- async和await是如何实现异步编程?
目录 异步编程样例 样例解析 浅谈Promise如何实现异步执行 参考 1.异步编程样例 样例: // 等待执行函数 function sleep(timeout) { return new Prom ...