pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则

前言

我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

私信小编01 02 03 04 即可获取数十套PDF哦!

安装

写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

pip install pyecharts

但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

使用实例

使用之前我们要强调一点:就是python2.x和python3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

from __future__ import unicode_literals

现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

柱状图-Bar

//导入柱状图-Bar

from pyecharts import Bar

//设置行名

columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

//设置数据

data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]

data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]

//设置柱状图的主标题与副标题

bar = Bar("柱状图", "一年的降水量与蒸发量")

//添加柱状图的数据及配置项

bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])

//生成本地文件(默认为.html文件)

bar.render()

运行结果如下:

简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

饼图-Pie

//导入饼图Pie

from pyecharts import Pie

//设置主标题与副标题,标题设置居中,设置宽度为900

pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)

//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示

pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)

//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签

pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)

//保存图表

pie.render()

箱体图-Boxplot

//导入箱型图Boxplot

from pyecharts import Boxplot

boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")

x_axis = ['降水量','蒸发量']

y_axis = [data1,data2]

//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]

yaxis = boxplot.prepare_data(y_axis)

boxplot.add("天气统计", x_axis, _yaxis)

boxplot.render()

折线图-Line

from pyecharts import Line

line = Line("折线图","一年的降水量与蒸发量")

//is_label_show是设置上方数据是否显示

line.add("降水量", columns, data1, is_label_show=True)

line.add("蒸发量", columns, data2, is_label_show=True)

line.render()

雷达图-Rader

from pyecharts import Radar

radar = Radar("雷达图", "一年的降水量与蒸发量")

//由于雷达图传入的数据得为多维数据,所以这里需要做一下处理

radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]

radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]

//设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同

schema = [

("Jan", 5), ("Feb",10), ("Mar", 10),

("Apr", 50), ("May", 50), ("Jun", 200),

("Jul", 200), ("Aug", 200), ("Sep", 50),

("Oct", 50), ("Nov", 10), ("Dec", 5)

]

//传入坐标

radar.config(schema)

radar.add("降水量",radar_data1)

//一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色

radar.add("蒸发量",radar_data2,item_color="#1C86EE")

radar.render()

散点图-scatter

from pyecharts import Scatter

scatter = Scatter("散点图", "一年的降水量与蒸发量")

//xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置

scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",

yaxis_name_gap=40)

scatter.render()

图表布局 Grid

由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

from pyecharts import Grid

//设置折线图标题位置

line = Line("折线图","一年的降水量与蒸发量",title_top="45%")

line.add("降水量", columns, data1, is_label_show=True)

line.add("蒸发量", columns, data2, is_label_show=True)

grid = Grid()

//设置两个图表的相对位置

grid.add(bar, grid_bottom="60%")

grid.add(line, grid_top="60%")

grid.render()

from pyecharts import Overlap

overlap = Overlap()

bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")

bar.add("降水量", columns, data1, mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_point=["max", "min"])

overlap.add(bar)

overlap.add(line)

overlap.render()

总结

  1. 导入相关图表包
  2. 进行图表的基础设置,创建图表对象
  3. 利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)
  4. 利用render()方法来进行图表保存

Python中的可视化神器!你知道是啥吗?没错就是pyecharts!的更多相关文章

  1. Python中的可视化神器:pyecharts

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则 前言 我们都知道python上的一款可视化工具matplotlib,而前些 ...

  2. python中的那些“神器”

    "武林至尊,宝刀屠龙,号令天下,莫敢不从,倚天不出,谁与争锋",这是神器.不过今天要说的python中的"神器"就没有这么厉害了,这里要说的"神器&q ...

  3. Python中两大神器&exec() &eval()

    一.神器1 -- 内置函数eval eval是python中的内置函数,它的作用是将字符串变为所对应的表达式,也相当于一个功能代码加双引号变为字符串,而eval又将字符串转为相应的功能,它在使用过程中 ...

  4. python Matplotlib数据可视化神器安装与基本应用

    Matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 手中有很多数据, Matplotlib能帮你画出美丽的: 线图; 散点图; 等高线图; 条形图; 柱状图; 3D ...

  5. python中的画图神器——turtle模块

    turtle库的基础命令介绍(1)画布画布cancas是绘图区域,可以设置它的大小和初始位置 turtle.screensize(1000,600,'red') 大小的设置 turtle.setup( ...

  6. python中利用matplotlib绘图可视化知识归纳

    python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...

  7. Python中zip()函数的解释和可视化

    zip()的作用 先看一下语法: zip(iter1 [,iter2 [...]]) -> zip object Python的内置help()模块提供了一个简短但又有些令人困惑的解释: 返回一 ...

  8. 推荐一款Python数据可视化神器

    1. 前言 在日常工作中,为了更直观的发现数据中隐藏的规律,察觉到变量之间的互动关系,人们常常借助可视化帮助我们更好的给他人解释现象,做到一图胜千文的说明效果. 在Python中,常见的数据可视化库有 ...

  9. sqlalchemy python中的mysql数据库神器

    在介绍sqlalchemy之前,我们先了解一下ORM. ORM 全称 Object Relational Mapping, 翻译过来叫对象关系映射.也就是说ORM 将数据库中的表与面向对象语言中的类建 ...

随机推荐

  1. WScript.Shell 与 Shell.Application 的不同

    本文主要对比,VBScript 中 CreateObject("WScript.Shell") 和 CreateObject("Shell.Application&quo ...

  2. rabbitmq++:rabbitmq 三种常用的交换机

    更多 rabbitmq 介绍 首先先介绍一个简单的一个消息推送到接收的流程,提供一个简单的图: 黄色的圈圈就是我们的消息推送服务,将消息推送到 中间方框里面也就是 rabbitMq的服务器: 然后经过 ...

  3. flask中filter和filter_by的区别

    filter_by表内部精确查询 User.query.filter_by(id=4).first() filter 全局查询 id必须指明来源于那张表User,而且需要用等号,而不是赋值 User. ...

  4. Salesforce LWC学习(十五) Async 以及 Picklist 公用方法的实现

    本篇参考:salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type) https://developer.salesfo ...

  5. 线程间交换数据的Exchanger

    作者:Steven1997 链接:https://www.jianshu.com/p/9b59829fb191 来源:简书 简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处. Exc ...

  6. Spring-Cloud-Netflix-Eureka注册中心

    TOC 概述 eureka是Netflix的子模块之一,也是一个核心的模块 eureka里有2个组件: 一个是EurekaServer(一个独立的项目) 这个是用于定位服务以实现中间层服务器的负载平衡 ...

  7. 1025 PAT Ranking (25 分)

    Programming Ability Test (PAT) is organized by the College of Computer Science and Technology of Zhe ...

  8. 手动搭建I/O网络通信框架2:Socket和ServerSocket入门实战,实现单聊

    第一章:手动搭建I/O网络通信框架1:Socket和ServerSocket入门实战,实现单聊 在第一章中运用Socket和ServerSocket简单的实现了网络通信.这一章,利用BIO编程模型进行 ...

  9. C#与html实现WebSocket交互(制作ktv手机点歌)

    ------------恢复内容开始------------ C#与html实现WebSocket交互(制作ktv手机点歌) C#端代码 static void Main(string[] args) ...

  10. Codeforces - Watermelon

    A. Watermelon time limit per test 1 second memory limit per test 64 megabytes input standard input o ...