Ujan has a lot of useless stuff in his drawers, a considerable part of which are his math notebooks: it is time to sort them out. This time he found an old dusty graph theory notebook with a description of a graph.

It is an undirected weighted graph on n vertices. It is a complete graph: each pair of vertices is connected by an edge. The weight of each edge is either 00 or 11; exactly m edges have weight 11, and all others have weight 00.

Since Ujan doesn't really want to organize his notes, he decided to find the weight of the minimum spanning tree of the graph. (The weight of a spanning tree is the sum of all its edges.) Can you find the answer for Ujan so he stops procrastinating?

Input

The first line of the input contains two integers n and m (1≤≤1051≤n≤105, 0≤≤min((−1)2,105)0≤m≤min(n(n−1)2,105)), the number of vertices and the number of edges of weight 11 in the graph.

The i-th of the next m lines contains two integers ai and bi (1≤,≤1≤ai,bi≤n, ≠ai≠bi), the endpoints of the i-th edge of weight 11.

It is guaranteed that no edge appears twice in the input.

Output

Output a single integer, the weight of the minimum spanning tree of the graph.

Examples
input

Copy

6 11
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6

output

Copy

2

input

Copy

3 0

output

Copy

0

Note

The graph from the first sample is shown below. Dashed edges have weight 00, other edges have weight 11. One of the minimum spanning trees is highlighted in orange and has total weight 22.

In the second sample, all edges have weight 00 so any spanning tree has total weight 00.

题意:完全图,给出一部分,求补图连通分量个数.

答案为连通分量个数减1, 用bitset优化太巧妙了~~~

对于每一个点(没有被访问过),枚举不和它相连并且没有访问过的点,依次dfs下去,得到一个连通分量.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100010;
map<int,bool>mp[maxn];
bitset<maxn>bit;
void dfs(int u){
bit[u] = 0;
for(int i = bit._Find_first();i < bit.size();i = bit._Find_next(i)){
if(!mp[u][i])dfs(i);
}
}
int main()
{
int n,m;
cin >> n >> m;
for(int i = 1;i <= m;i++){
int u,v;
cin >> u >> v;
mp[u][v] = mp[v][u] = 1;
}
for(int i = 1;i <= n;i++)bit[i] = 1;
int sum = 0;
for(int i = 1;i <= n;i++){
if(bit[i])dfs(i),sum++;
}
cout << sum - 1 << endl;
return 0;
}

CodeForces - 1243D. 0-1 MST(补图连通分量个数)的更多相关文章

  1. SDUT 1488 数据结构实验:连通分量个数

    数据结构实验:连通分量个数 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description  在无向图中,如 ...

  2. SDUT OJ 之 连通分量个数 (dfs)

    数据结构实验:连通分量个数 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  在无向图中,如果从顶点vi到顶点vj有路径,则称vi ...

  3. UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。

    /** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...

  4. [ActionScript 3.0] AS3 获取函数参数个数

    function createFunction(param1:String,param2:String,param3:int=0):void { trace(arguments.length);//a ...

  5. 调用类java.lang.Math的成员方法"public static double random"运算下面表达式10000次,统计其中生成的整数0,1,2,.....20的个数分别是多少,并输出统计结果.(int)(Math.random()*20+0.5)

    public class Test2 { public static void main(String args[]){ int num; int count[]=new int[21]; for(i ...

  6. CodeForces - 1243D (思维+并查集)

    题意 https://vjudge.net/problem/CodeForces-1243D 有一张完全图,n个节点 有m条边的边权为1,其余的都为0 这m条边会给你 问你这张图的最小生成树的权值 思 ...

  7. 求0到n之间素数个数的序列

    要求: (1) 找出0-1000之间素数(2) 设f(n)表示0-n之间的素数个数,计算出当n=0,1,2,3,.....,997时f(n)的值,并写入文件 分析: 首先找素数使用一个效率较高的方法- ...

  8. 数组中的数分为两组,让给出一个算法,使得两个组的和的差的绝对值最小,数组中的数的取值范围是0<x<100,元素个数也是大于0, 小于100 。

    比如a[]={2,4,5,6,7},得出的两组数{2,4,6}和{5,7},abs(sum(a1)-sum(a2))=0: 比如{2,5,6,10},abs(sum(2,10)-sum(5,6))=1 ...

  9. Codeforces 196E Opening Portals MST (看题解)

    Opening Portals 我们先考虑如果所有点都是特殊点, 那么就是对整个图求个MST. 想在如果不是所有点是特殊点的话, 我们能不能也 转换成求MST的问题呢? 相当于我们把特殊点扣出来, 然 ...

随机推荐

  1. OpenCV学习日志:计算机视觉资源汇总

    1.1 重要会议 (1)机器视觉重要会议 CVPR:Conferenceon Computer Vision and Pattern Recognition, IEEE, 五星 ICCV:Intern ...

  2. 每天一点点之vue框架开发 - 引入Jquery

    1. 安装jquery npm install jquery --save-dev 2.在build/webpack.base.conf.js中添加如下内容 var webpack = require ...

  3. Webpack - 把json文件打包进js文件

    把html文件打包进index.js   1  新建文件 typings.d.ts    declare module "*.html" {   const content: st ...

  4. Arduino - Nano针脚分配时需要注意的事项

    0.1为Rx.Tx 针脚,这两个针脚一般作为串口使用,非串口设备尽量不占用该针脚.2.3为中断口,分别对应中断0.中断1,需要中断功能的设备,必须接入此.2-13.A0-A5,共18个针脚,都可以作为 ...

  5. 详解CentOS7安装配置vsftp搭建FTP

    安装配置vsftpd做FTP服务,我们的Web应用使用git管理进行迭代,公共文件软件存储使用开源网盘Seafile来管理,基本够用.想不到FTP的使用的场景,感觉它好像老去了,虽然现在基本没有用到这 ...

  6. CSS3 之高级动画(6)CSS3 clip-path属性实现的几何图形变形动画

    clip-path 属性介绍: clip-path属性可以创建一个只有元素的部分区域可以显示的剪切区域. 区域内的部分显示,区域外的隐藏. 剪切区域是被引用内嵌的URL定义的路径或者外部svg的路径. ...

  7. Javascript里EQ、NE、GT、LT、GE、LE含义

    EQ 就是 EQUAL等于 NE就是 NOT EQUAL不等于 GT 就是 GREATER THAN大于  LT 就是 LESS THAN小于 GE 就是 GREATER THAN OR EQUAL ...

  8. python np array转json

    np array转json import numpy as np import codecs, json a = np.arange().reshape(,) # a by array b = a.t ...

  9. JAVA函数库

    1. 文件相关 1.1 判断目录是否存在 public static boolean dictionaryExist(String path) { File file = new File(path) ...

  10. 自己编写DLL并导出函数

    sub.c #include<windows.h> #include"sub.h" int WINAPI DllMain(_In_ HANDLE _HDllHandle ...