HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005
Number Sequence
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
Output
1 1 3
1 2 10
0 0 0
2
5
网上的一些解法很多是关于找规律的,其实找规律也是有一些道理的,根据鸽巢原理总会出现一些重复项,所以找到规律以后开始mod就行
但是这种解法毕竟还是有bug,虽然能够AC掉,但也有人提出了Hack数据 HDU数据有点水
其实Hack挺容易,就是针对一个程序,设计一组n,k让它很难找出规律就行
所以这个时候矩阵快速幂就来了~
mod的问题很好解决,我们先来看一下如何构建矩阵
我们可以假定有一个矩阵K,使得{f(n-1) f(n-2)}与之相乘之后可以得到{f(n) f(n-1)}
由f(n) = (A * f(n - 1) + B * f(n - 2)):
相乘之后的矩阵可化为{A * f(n - 1) + B * f(n - 2) f(n-1) }
不难得出矩阵K
所以初始化矩阵ans为
{f(2) f(1)} 即 {1 1} 竖着写也可以我懒得开二维所以直接写了横着的一维数组
构建另一个矩阵K为
{A 1}
{B 0}
如果n的值为1或2,直接返回 注意一定要返回!!!不然n=1,n-=2,n=-1,然后while(-1) 呵呵呵~~~~
否则求A*Kn-2 输出ans[1]的值即可。 为什么是n-2?显然啊,可以自己举个例子,求n=3,要乘1次即可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int mat[][],ans[];
void Mul(){
int temp[];
for(int i=;i<=;i++){
temp[i]=;
for(int k=;k<=;k++)
temp[i]+=(ans[k]*mat[k][i]%);
temp[i]%=;
}
memcpy(ans,temp,sizeof(temp));
}
void Mulself(){
int temp[][];
for(int i=;i<=;i++){
for(int j=;j<=;j++){
temp[i][j]=;
for(int k=;k<=;k++)
temp[i][j]+=(mat[i][k]*mat[k][j]%);
temp[i][j]%=;
}
}
memcpy(mat,temp,sizeof(temp));
}
int main(){
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c)){
if(!b&&!a&&!c)break;
if(c<= ){
printf("1\n");
continue;
}
mat[][]=a,mat[][]=;
mat[][]=b;mat[][]=;
ans[]=ans[]=;
c-=;
while(c){
if(c&)Mul();
Mulself();
c>>=;
}
printf("%d\n",ans[]%);
}
}
HDU - 1005 Number Sequence 矩阵快速幂的更多相关文章
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
- Yet Another Number Sequence——[矩阵快速幂]
Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...
- Yet another Number Sequence 矩阵快速幂
Let’s define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n ...
- SDUT1607:Number Sequence(矩阵快速幂)
题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1607 题目描述 A number seq ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)
题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...
随机推荐
- 从游戏到汽车 “明星IP”的发财轨迹
"明星IP"的发财轨迹" title="从游戏到汽车 "明星IP"的发财轨迹"> 移动互联网时代的开启,不仅彻底重构了大众生 ...
- Git 程序员篇
关于 Git Git 背后的故事 伟大的作品总是诞生于伟大的时代,正如 Git 同样诞生于一个英雄辈出.极富纷争的年代. 2005 年,Linux 内核开发社区正面临严峻的挑战:他们不能继续使用 Bi ...
- Samtec 5G探索之路
序言:时代在发展,2020年5G作为元年.5G全程第五代移动通信技术(英语:5th generation mobile networks或5th generation wireless systems ...
- HTML简单的提示框
由于项目中需要一个简单的提示框,就是鼠标放上去,可以提示相关信息,引用第三方的比较麻烦,所以,这里封装了一个很简单的HTML方法. <script src="http://cdn.st ...
- 【前端】这可能是你看过最全的css居中解决方案了~
1.水平居中:行内元素解决方案 适用元素:文字,链接,及其其它inline或者inline-*类型元素(inline-block,inline-table,inline-flex) html部分代码: ...
- 简单的节流函数throttle
在实际项目中,总会遇到一些函数频繁调用的情况,比如window.resize,mouseover,上传进度类似的触发频率比较高的函数,造成很大的性能损耗,这里可以使用节流函数来进行性能优化,主要是限制 ...
- NoVNC API 文档翻译
原文地址:https://github.com/novnc/noVNC/blob/master/docs/API.md 时间:2019-05-21 noVNC API The interfac ...
- DBProxy快速入门
1. DBProxy安装 1.1 安装依赖项 CentOS yum install -y Percona-Server-devel-55.x86_64 Percona-Server-client-55 ...
- Java多线程并发03——在Java中线程是如何调度的
在前两篇文章中,我们已经了解了关于线程的创建与常用方法等相关知识.接下来就来了解下,当你运行线程时,线程是如何调度的.关注我的公众号「Java面典」了解更多 Java 相关知识点. 多任务系统往往需要 ...
- 有关EPX Studio使用DELPHI5作为基础环境版本的说明
英巴卡迪诺北京科技有限公司,地址是北京市朝阳门外大街18号丰联广场B座813B,这家公司这家公司不拥有:delphi 1.0~delphi7.0 .delphi 2005版本的著作权,这些都还是属于B ...