理论

概率近似正确((probably approximately correct)学习框架下。一个概念是强可学习的充分必要条件是这个概念是弱可学习(仅比随机猜测稍好)。

要求

个体学习器要好而不同。好-要不随机猜测强,不同--多样性

Bagging (Bootstrap Aggregating):随机森林

通过bootstrap采样形成N个数据集(样本扰动来保证多样性),每个数据集训练一个模型,最终预测结果由投票法决定。

特点:

  • boostrap采样。
  • 并行结构
  • 大多数投票决定最终结果。

随机森林的特点:

  • CART树的集合。

  • Binary Partition。

  • 没有剪枝。

  • 两个随机性。

stacking:带权重的bagging

Boosting: H(x) = sign(∑αi hi(x))

先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器如此重复进行,直至基学习器数目达到事先指定的值T , 最终将这T 个基学习器进行加权结合.

特点:

  • 关注降低偏差。
  • 分类器串行生成
  • 训练样本有权重(调整权重等价于调整分布)。
  • 输出结果通过加权结合(weighted voting)

AdaBoost: Adaptive Boosting,权重自适应

特点:

  • 提高那些被前一轮弱分类器错误分类样本的权值,降低那些被正确分类样本的权值(训练样本分布调整方式)。
  • 加权多数表决加大分类误差率小的弱分类器的权值,使其 在表决中起较大的作用,减小分类误差率大的弱分类器的权值,使其在 表决中起较小的作用。(加权结合方式).

梯度提升树(Gradient Boosting Decison Tree, GBDT;Gradient Boosting Tree)

特点:

  • 采用CART树为基学习器
  • 提升树采用前向分步算法:从前向后,每一步只学习一个基函数及其系数,逐步逼近目标函数式。
  • 损失函数的负梯度作为残差的估计值。

XGBoost

特点:

  • 正则化项防止过拟合。
  • XGBoost使用了一阶和二阶偏导, 二阶导数有利于梯度下降的更快更准。

集成学习基础知识总结-Bagging-Boosting的更多相关文章

  1. Matrix学习——基础知识

    以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明. 首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部 ...

  2. JAVA学习基础知识总结(原创)

    (未经博主允许,禁止转载!) 一.基础知识:1.JVM.JRE和JDK的区别: JVM(Java Virtual Machine):java虚拟机,用于保证java的跨平台的特性. java语言是跨平 ...

  3. ansible学习基础知识和模块(一)

    基础知识补充: 常用自动化运维工具 Ansible:使用python来开发的,无需设置Agentless(代理),一般管理几百台.与ssh的方式也不一样,ssh是基于c/s模式(客户端+服务器)来使用 ...

  4. Python学习-基础知识-2

    目录 Python基础知识2 一.二进制 二.文字编码-基础 为什么要有文字编码? 有哪些编码格式? 如何解决不同国家不兼容的编码格式? unicode编码格式的缺点 如何既能全球通用还可以规避uni ...

  5. IOS科研IOS开发笔记学习基础知识

    这篇文章是我的IOS学习笔记,他们是知识的基础,在这里,根据记录的查询后的条款. 1,UIScrollView能完毕滚动的功能. 示比例如以下: UIScrollView *tableScrollVi ...

  6. MySQL学习基础知识1

    什么是数据库? 数据库就是存储数据的仓库. 存储方式: 变量 无法永久存储 文件处理,可以永久存储,弊端:文件只能在自己的计算机读写,无法被分享(局域网除外) 数据库分类: 1.关系型数据库 提供某种 ...

  7. python学习基础知识

    学习python前最好知道的知识点: python之父:Guido van Rossum python是一种面向对象语言 目前python最新的版本是3.8,python2已经逐渐淘汰 python的 ...

  8. android开发学习---基础知识学习、如何导入已有项目和开发一个电话拨号器

    一.基础知识点学习  1.Android体系结构 如图所示,android 架构分为三层: (1)最底层是linux内核,主要是各种硬件的驱动,如相机驱动(Camera Driver),闪存驱动(Fl ...

  9. Java学习---基础知识学习

    2016-07-23  周六 利用键盘输入的时候需要抛出异常 ,直接快捷键 ctrl + 1 ;定义数组 int score[] = new int[4]  ;  只有4个数字BufferedRead ...

随机推荐

  1. 曹工说Redis源码(5)-- redis server 启动过程解析,以及EventLoop每次处理事件前的前置工作解析(下)

    曹工说Redis源码(5)-- redis server 启动过程解析,eventLoop处理事件前的准备工作(下) 文章导航 Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis ...

  2. Flex Socket与Java通信实例说明(转)

    Flex Socket与Java通信实例说明(转) 这两天一直在flex的Socket ,现在终于懂了很多.由浅到深一步一步深入.慢慢体会实例,虽然实例都是在网上找的,但也经过了我的测试.我比较喜欢注 ...

  3. Atlassian 系列软件安装(Crowd+JIRA+Confluence+Bitbucket+Bamboo)

    公司使用的软件开发和协作工具为 Atlassian 系列软件,近期需要从腾讯云迁移到阿里云环境,简单记录下安装和配置过程.(Atlassian 的文档非常详尽,过程中碰见的问题都可以找到解决办法.) ...

  4. svg整体缩放至指定大小

    一.问题 svg画面跑在分辨率低的电脑上,导致不能完全显示. 二.要求 svg要能够根据电脑的屏幕大小自动缩放至适配电脑的尺寸. 三.实现 1.获取本机窗口高度.宽度 let clientWidth ...

  5. 惊呆了,Servlet Filter和Spring MVC Interceptor的实现居然这么简单

    前言 创建型:单例模式,工厂模式,建造者模式,原型模式 结构型:桥接模式,代理模式,装饰器模式,适配器模式,门面模式,组合模式,享元模式 行为型:观察者模式,模板模式,策略模式,责任链模式,状态模式, ...

  6. E - Dungeon Master BFS

    [NWUACM] 你被困在一个三维的空间中,现在要寻找最短路径逃生!空间由立方体单位构成你每次向上下前后左右移动一个单位需要一分钟你不能对角线移动并且四周封闭是否存在逃出生天的可能性?如果存在,则需要 ...

  7. MVC5+EasyUI+EF6增删改查的演示

    一.创建MVC项目 二.引入EasyUI 1.进入easyui官网下载源码 2. 将上述源码中需要的jquery 有选择的加到项目中来 添加Content文件夹,放入easyui代码 三.添加EF, ...

  8. 基于netty实现rpc框架-spring boot服务端

    demo地址 https://gitee.com/syher/grave-netty RPC介绍 首先了解一下RPC:远程过程调用.简单点说就是本地应用可以调用远程服务器的接口.那么通过什么方式调用远 ...

  9. vs 基础

    1     写入 读取: 1)  写入:Console.Write("hello china")                                      光标紧跟 ...

  10. DeepinV20系统文件管理器右键发送至为知笔记

    1. 创作背景 昨天在深度系统上做了一个打开文件管理器选择文件右键发送文本至博客园的插件. 这个插件对于我自己来说是及其方便的东西,平时的学习积累,工作经验或者生活感悟,随手记下之后,就能够轻松发送出 ...