习题1.3(b):分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解分别对应图解法中可行域的哪一顶点.
$\max z=2x_1+x_2$,
$$
s.t.
\begin{cases}
  5x_2\leq 15\\
6x_1+2x_2\leq 24\\
x_1+x_2\leq 5\\
x_1,x_2\geq 0\\
\end{cases}
$$
解:  先用图解法解决这个问题.以 $x_1$ 为横坐标,$x_2$ 为纵坐标,做图如下:
易得 $z$ 的最大值为 $8.5$.易得图上的可行域中有五个顶点,分别是$A(0,3),B(2,3),C(3.5,1.5),D(4,0),E(0,0)$.下面我们用单纯形法来解这道题.为此先把上面的线性规划问题化为标准形式,得到

$\max z=2x_1+x_2+0\cdot
x_3+0\cdot x_4+0\cdot x_5$.
$$s.t.
\begin{cases}
 0\cdot x_1+5x_2+x_3+0\cdot x_4+0\cdot x_5=15\\
6x_1+2x_2+0\cdot x_3+x_4+0\cdot x_{5}=24\\
x_1+x_2+0\cdot x_3+0\cdot x_4+x_5=5\\
x_1,x_2,x_3,x_4,x_5\geq 0
\end{cases}
$$
可得约束方程组的系数矩阵为
$$A=
\begin{bmatrix}
  0&5&1&0&0\\
6&2&0&1&0\\
1&1&0&0&1\\
\end{bmatrix}
$$
该矩阵由5个列向量组成,记第 $i(1\leq i\leq 5)$ 个列向量为 $P_i$.该矩阵由 3 个行向量组成,记第 $k$($1\leq k\leq 3$) 个行向量为 $Q_k$.易得向量 $Q_1,Q_2,Q_3$ 线性无关,因此由线性代数中的知识,我们知道 $P_1,P_2,P_3,P_4,P_5$ 中线性无关的向量不会超出 3个.我们知道,$P_3,P_4,P_5$ 肯定线性相关,因此该线性规划问题的基是存在的.我们将它们列如下:

  1. $\{P_1,P_2,P_3\}$
  2. $\{P_1,P_2,P_4\}$
  3. $\{P_1,P_2,P_5\}$
  4. $\{P_2,P_3,P_4\}$
  5. $\{P_2,P_3,P_5\}$
  6. $\{P_3,P_4,P_5\}$
  7. $\{P_1,P_3,P_4\}$
  8. $\{P_1,P_3,P_5\}$
  9. $\{P_1,P_4,P_5\}$(显然不是一组基)
  10. $\{P_2,P_4,P_5\}$

这些基对应的基解分别为

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.
  3. $x_1=3,x_2=3,x_5=-1$.其余皆为0.
  4. $x_2=5,x_3=-10,x_4=14$.其余皆为0.
  5. $x_2=12,x_3=-45,x_5=-7$.其余皆为0.
  6. $x_3=15,x_4=24,x_5=5$.其余皆为0.
  7. $x_1=5,x_3=15,x_4=-6$.其余皆为0.
  8. $x_1=4,x_3=15,x_5=1$.其余皆为0.
  9. $x_2=3,x_4=18,x_5=2$.其余皆为0.

这些基解中,基可行解是

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.对应点 $C$.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.对应点 $B$.
  3. $x_3=15,x_4=24,x_5=5$.其余皆为0.对应点 $E$.
  4. $x_1=4,x_3=15,x_5=1$.其余皆为0.对应点 $D$.
  5. $x_2=3,x_4=18,x_5=2$.其余皆为0.对应点 $A$.

《运筹学基础及应用》习题1.3(b)的更多相关文章

  1. 《运筹学基础及应用》习题1.1(b),1.1(c),1.2(a)

    用图解法求解下列线性规划问题,并指出问题具有惟一最优解,无穷多最优解,无界解还是无可行解. 习题1.1(b):$\max z=3x_1+2x_2$$$s.t\begin{cases}  2x_1+x_ ...

  2. 零基础学python习题 - Python必须知道的基础语法

    1. 以下变量命名不正确的是(D) A. foo = the_value B. foo = l_value C. foo = _value D. foo = value_& 2. 计算2的38 ...

  3. 零基础学python习题 - 进入python的世界

    1. python拥有以下特性:面向对象的特性.动态性.内置的数据结构.简单性.健壮性.跨平台性.可扩展性.强类型语言.应用广泛 2. python 需要  编译 3. 以下不属于python内置数据 ...

  4. Linux网站运维工程师基础大纲

    第一阶段:Linux运维基础 第一章:Linux基础以及入门介绍 1.Linux硬件基础 2.Linux发展过程 3.创建虚拟机和系统安装 第二章:Linux系统目录结构介绍 1.Linux系统优化 ...

  5. 跟阿铭学Linux习题答案

    第一章:走进Linux 1.简述它的发展历史,列举几种代表性的发行版 Linux之前是Unix,由于Unix收费昂贵,so,Richard Stallman 发起了开发自由软件的运动,并成立了自由软件 ...

  6. Python老王视频习题答案

    基础篇2:一切变量都是数据对象的引用sys.getrefcount('test') 查看引用计数变量命名不能以数字开头编码:ascii.unicode.utf-81.阅读str对象的help文档,并解 ...

  7. 7月份计划-----dream

    梦想还是要有的,万一实现了呢? 数学 150[total] 专业课 150[total] 英语 100[total] 政治 100[total] 第一轮复习计划开始执行 1.专业课: 通过课件把所有的 ...

  8. 电脑小白学习软件开发-C#语言基础之循环重点讲解,习题

    写代码也要读书,爱全栈,更爱生活.每日更新原创IT编程技术及日常实用视频. 我们的目标是:玩得转服务器Web开发,搞得懂移动端,电脑客户端更是不在话下. 本教程是基础教程,适合任何有志于学习软件开发的 ...

  9. 快学Scala习题解答—第一章 基础

    1 简介 近期对Scala比较感兴趣,买了本<快学Scala>,感觉不错.比<Programming Scala:Tackle Multi-Core Complexity on th ...

随机推荐

  1. SpringCloud学习之Feign 的使用(五)

     Feign 是一个声明式的伪RPC的REST客户端,它用了基于接口的注解方式,很方便的客户端配置,刚开始使用时还不习惯,感觉是在客户端写服务端的代码,Spring Cloud 给 Feign 添加了 ...

  2. bootstrap快速上手

    bootstarp快速上手 首先英文不是非常好无法阅读英文文档的同学的可以翻阅其他团队翻译的官方:http://code.z01.com/ 项目依赖 ,css文件在所有样式之前,js依赖,首先jq,再 ...

  3. 80.常用的返回QuerySet对象的方法使用详解:order_by

    order_by: 将模型生成的表按照某个字段进行排序,默认情况下,按照升序的顺序排序,如果想要按照降序的顺序排序可以在字段的前面加一个"-",加一个负号就可以进行反转. mode ...

  4. Delphi调用c++写的dll (me)

    unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...

  5. 怎样在 Akka Persistence 中实现分页查询

    在 Akka Persistence 中,数据都缓存在服务内存(状态),后端存储的都是一些持久化的事件日志,没法使用类似 SQL 一样的 DSL 来进行分页查询.利用 Akka Streams 和 A ...

  6. java学习——内部类(一)

    内部类 把一个类放在另一个类中定义,这个定义在其他内部的类被称为内部类,包含内部类 的类被成为外部类,Java从JDK1.1开始引入了内部类的定义. 内部类的作用: 内部类提供了更好的封装,可以把内部 ...

  7. Python入门方法推荐,哪些基础知识必学?

    很多想入门的小伙伴还不知道Python应该怎么学,哪些知识必学,今天我们就来盘点一下. 01.入门方法推荐 总体来讲,找一本靠谱的书,由浅入深,边看边练. 网上的学习教程有很多,多到不知道如何选择.所 ...

  8. 面向对象 part7 class

    类的定义 类实际上是个“特殊的函数“,就像能够定义函数表达式和函数声明一样,类语法 有两个组成部分:类表达式和类声明式 类声明 类声明没有提升 静态方法 只有构造函数名可以调用,实例无法使用.常用于应 ...

  9. 微信H5支付demo

    首先我们必须得在微信公众平台和微信商业平台那边配置好相关配置 1.注册微信服务号,开通微信支付权限绑定微信商业平台(这个具体怎么操作我就不说了) 2.获取应用(公众号)appid.应用(公众号)秘钥. ...

  10. Vue2--非父子组件通信笔记

    核心要点: var Event=new Vue(); Event.$emit(事件名称, 数据) Event.$on(事件名称,function(data){ //data }.bind(this)) ...