习题1.3(b):分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解分别对应图解法中可行域的哪一顶点.
$\max z=2x_1+x_2$,
$$
s.t.
\begin{cases}
  5x_2\leq 15\\
6x_1+2x_2\leq 24\\
x_1+x_2\leq 5\\
x_1,x_2\geq 0\\
\end{cases}
$$
解:  先用图解法解决这个问题.以 $x_1$ 为横坐标,$x_2$ 为纵坐标,做图如下:
易得 $z$ 的最大值为 $8.5$.易得图上的可行域中有五个顶点,分别是$A(0,3),B(2,3),C(3.5,1.5),D(4,0),E(0,0)$.下面我们用单纯形法来解这道题.为此先把上面的线性规划问题化为标准形式,得到

$\max z=2x_1+x_2+0\cdot
x_3+0\cdot x_4+0\cdot x_5$.
$$s.t.
\begin{cases}
 0\cdot x_1+5x_2+x_3+0\cdot x_4+0\cdot x_5=15\\
6x_1+2x_2+0\cdot x_3+x_4+0\cdot x_{5}=24\\
x_1+x_2+0\cdot x_3+0\cdot x_4+x_5=5\\
x_1,x_2,x_3,x_4,x_5\geq 0
\end{cases}
$$
可得约束方程组的系数矩阵为
$$A=
\begin{bmatrix}
  0&5&1&0&0\\
6&2&0&1&0\\
1&1&0&0&1\\
\end{bmatrix}
$$
该矩阵由5个列向量组成,记第 $i(1\leq i\leq 5)$ 个列向量为 $P_i$.该矩阵由 3 个行向量组成,记第 $k$($1\leq k\leq 3$) 个行向量为 $Q_k$.易得向量 $Q_1,Q_2,Q_3$ 线性无关,因此由线性代数中的知识,我们知道 $P_1,P_2,P_3,P_4,P_5$ 中线性无关的向量不会超出 3个.我们知道,$P_3,P_4,P_5$ 肯定线性相关,因此该线性规划问题的基是存在的.我们将它们列如下:

  1. $\{P_1,P_2,P_3\}$
  2. $\{P_1,P_2,P_4\}$
  3. $\{P_1,P_2,P_5\}$
  4. $\{P_2,P_3,P_4\}$
  5. $\{P_2,P_3,P_5\}$
  6. $\{P_3,P_4,P_5\}$
  7. $\{P_1,P_3,P_4\}$
  8. $\{P_1,P_3,P_5\}$
  9. $\{P_1,P_4,P_5\}$(显然不是一组基)
  10. $\{P_2,P_4,P_5\}$

这些基对应的基解分别为

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.
  3. $x_1=3,x_2=3,x_5=-1$.其余皆为0.
  4. $x_2=5,x_3=-10,x_4=14$.其余皆为0.
  5. $x_2=12,x_3=-45,x_5=-7$.其余皆为0.
  6. $x_3=15,x_4=24,x_5=5$.其余皆为0.
  7. $x_1=5,x_3=15,x_4=-6$.其余皆为0.
  8. $x_1=4,x_3=15,x_5=1$.其余皆为0.
  9. $x_2=3,x_4=18,x_5=2$.其余皆为0.

这些基解中,基可行解是

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.对应点 $C$.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.对应点 $B$.
  3. $x_3=15,x_4=24,x_5=5$.其余皆为0.对应点 $E$.
  4. $x_1=4,x_3=15,x_5=1$.其余皆为0.对应点 $D$.
  5. $x_2=3,x_4=18,x_5=2$.其余皆为0.对应点 $A$.

《运筹学基础及应用》习题1.3(b)的更多相关文章

  1. 《运筹学基础及应用》习题1.1(b),1.1(c),1.2(a)

    用图解法求解下列线性规划问题,并指出问题具有惟一最优解,无穷多最优解,无界解还是无可行解. 习题1.1(b):$\max z=3x_1+2x_2$$$s.t\begin{cases}  2x_1+x_ ...

  2. 零基础学python习题 - Python必须知道的基础语法

    1. 以下变量命名不正确的是(D) A. foo = the_value B. foo = l_value C. foo = _value D. foo = value_& 2. 计算2的38 ...

  3. 零基础学python习题 - 进入python的世界

    1. python拥有以下特性:面向对象的特性.动态性.内置的数据结构.简单性.健壮性.跨平台性.可扩展性.强类型语言.应用广泛 2. python 需要  编译 3. 以下不属于python内置数据 ...

  4. Linux网站运维工程师基础大纲

    第一阶段:Linux运维基础 第一章:Linux基础以及入门介绍 1.Linux硬件基础 2.Linux发展过程 3.创建虚拟机和系统安装 第二章:Linux系统目录结构介绍 1.Linux系统优化 ...

  5. 跟阿铭学Linux习题答案

    第一章:走进Linux 1.简述它的发展历史,列举几种代表性的发行版 Linux之前是Unix,由于Unix收费昂贵,so,Richard Stallman 发起了开发自由软件的运动,并成立了自由软件 ...

  6. Python老王视频习题答案

    基础篇2:一切变量都是数据对象的引用sys.getrefcount('test') 查看引用计数变量命名不能以数字开头编码:ascii.unicode.utf-81.阅读str对象的help文档,并解 ...

  7. 7月份计划-----dream

    梦想还是要有的,万一实现了呢? 数学 150[total] 专业课 150[total] 英语 100[total] 政治 100[total] 第一轮复习计划开始执行 1.专业课: 通过课件把所有的 ...

  8. 电脑小白学习软件开发-C#语言基础之循环重点讲解,习题

    写代码也要读书,爱全栈,更爱生活.每日更新原创IT编程技术及日常实用视频. 我们的目标是:玩得转服务器Web开发,搞得懂移动端,电脑客户端更是不在话下. 本教程是基础教程,适合任何有志于学习软件开发的 ...

  9. 快学Scala习题解答—第一章 基础

    1 简介 近期对Scala比较感兴趣,买了本<快学Scala>,感觉不错.比<Programming Scala:Tackle Multi-Core Complexity on th ...

随机推荐

  1. PHP集成环境wamp和navicat for mysql 的安装

    1. PHP集成环境WAMP的安装: 下载wamp: 链接:https://pan.baidu.com/s/1zvoPEbLdG7y04WWHNM6UcA  密码:mxd3 安装过程如下图: 安装完成 ...

  2. idea拉取git项目并创建为maven项目(新创建github项目)

    0 环境 系统环境:win10 编辑器:idea 1 正文 1 clone项目 跟着提示yes 下一步 2 在根节点添加pom.xml(maven) <?xml version="1. ...

  3. VMware DRS部分知识点

    主机添加到集群中,不需要维护模式(有虚拟机开机状态时也可以添加进去). 主机从集群中移除,需要主机进入维护模式. HA和DRS 全自动 当设置虚拟机必须在主机上时 DRS优先级大于HA 就算主机挂了H ...

  4. Python 重新加载模块

    每个Python文件中的import modulename只被加载一遍,如果在运行过程中,这个Module被更改了,即使在在interpretor中运行import 语句也没用. 可以使用import ...

  5. MySQL--mysql中You can’t specify target table for update in FROM clause错误解决方法

    参考:http://www.jb51.net/article/60926.htm mysql中You can't specify target table for update in FROM cla ...

  6. jsp的appilication.getInitParameter()方法无法获取到值的问题

    背景介绍 今天研究jsp的内置对象时发现,使用appilication.getInitParameter()从web.xml文件中获取值的时候,死活获取不到,折腾了将近一个小时,后来出现问题的原因却让 ...

  7. springboot的配置文件说明

    1.以servlet的方式启动SpringBoot 正常情况下要复制代码到tomcat去启动,但springboot内置tomcat了,配置好就可以直接run方法直接运行. 2.直接run运行

  8. saturates|meteoric|enclose|marooned|predators|Pioneer community|salinization|condenser|embodied

    saturates渗透 meteoric蒸汽 enclose包围 Pioneer community 先锋群落 Climax community顶级群落 cumulative积累 Rebound 回弹 ...

  9. mybatis自动扫描的时候,接口跟xml文件的名字最好能够一一对应

    事实证明这是十分有好处的,当然,即便你不这么做,它也不一定会报invalid bound statement (not found),因为你不知道从哪儿拷来的配置文件可能从其他的地方做了配置,但是这么 ...

  10. sql字符串常用函数

    1.replace  REPLACE(String,from_str,to_str) 即:将String中所有出现的from_str替换为to_str 2.left  left(String,2) 从 ...