CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2)
E. Devu and Flowers
time limit per test
4 seconds memory limit per test
256 megabytes input
standard input output
standard output Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color. Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7). Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways. Input
The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014). The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012). Output
Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7). Sample test(s)
Input
2 3 Output
2 Input
2 4 Output
1 Input
3 5 Output
3 Note
Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}. Sample 2. There is only one way of selecting 4 flowers: {2, 2}. Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}. |
题意:有N种花,每种最多f[i]枝,从中选s枝花,问有多少种选法。
题解:隔板法+容斥原理+Lucas定理算大组合数+求逆元
如此难的题,我不懂!我是看 http://hzwer.com/3810.html 学会的。
首先看没有f[i]枝数限制的话,可以用隔板法,N种花选s枝,相当于s个相同的球放到N个箱子有多少种放法。隔板法要求每个箱子至少放1个球,所以我们先增加N个假球来搞隔板法(相当于隔完板把每个盒子去掉一个球,就能算到有空的的情况了),N+s个球有N+s-1个空隙,分N个箱子需要N-1个隔板,种类数有C(N+s-1 , N-1)种。
然后观察有f[i]限制的情况。我们可以假装取超了,假装已经在第i个盒子取了f[i]+1个球,把总球数减去(f[i]+1),用这个总球数可以用C(N'+s-1,N'-1)算出取超了的情况的种类数。
然后可能有0个盒子取超、1个盒子盒子取超、2个盒子取超……等等好多情况,这些情况还有互相重复的,这就要用到容斥原理。
ans=0个超的情况数 - 各种1个超的情况数 +各种2个超的情况数 - 各种3个超的情况数……
知道要算什么了,接下来看怎么算。
N<=20,s<=10^14,各种盒子取超的情况可以2^20枚举。算C(N+s-1 - ... , N-1)就比较难,不可能直接算。
用到Lucas定理:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p),左边继续递归Lucas,右边用逆元来算。
怎么用逆元:C(n,m)不是先算出分子和分母,然后分子除以分母嘛,我们可以当做用分子乘以分母的逆元。分母的逆元可以用超碉的一个定理:
费马小定理a^(p-1)=1(mod p),a为质数
a^(p-2)=a^(-1)(mod p),那么a^(p-2)就是a在modp意义下的逆元。
我们就用快速幂求出分母^(p-2),就是逆元了。
用这么多知识才能解E题,我都怕,是时候变碉了。
代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) const ll maxs=1e14;
const ll MOD=1e9+;
ll a[];
ll n,s,ans; ll PowerMod(ll a, ll b) {
ll tmp = a, ret = ;
while (b) {
if (b & ) ret = ret * tmp % MOD;
tmp = tmp * tmp % MOD;
b >>= ;
}
return ret;
} ll calC(ll n,ll m){
m=n-m>m?m:n-m;
ll up=,down=;
int i;
for(i=;i<=m;i++){
down*=i;
down%=MOD;
up*=(n-i+);
up%=MOD;
}
return (up*PowerMod(down,MOD-))%MOD;
} ll Lucas(ll n, ll m) {
if(m==)return ;
return (Lucas(n/MOD, m/MOD)*calC(n%MOD, m%MOD))%MOD;
} void attack(ll now,ll sum,ll flag){
if(sum<n)return;
if(now==n){
//printf("%I64d C(%I64d,%I64d)=",flag,sum-1 , n-1);
//printf("%I64d\n",Lucas(sum-1,n-1));
ans+=flag*Lucas(sum- , n-);
ans%=MOD;
return;
}
attack(now+,sum,flag);
attack(now+,sum-a[now]-,-flag);
} int main() {
int i;
scanf("%I64d%I64d",&n,&s);
REP(i,n) scanf("%I64d",&a[i]);
ans=;
attack(,n+s,);
printf("%I64d\n",((ans%MOD)+MOD)%MOD);
return ;
}
CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)的更多相关文章
- CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)
Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- CF451E Devu and Flowers(容斥)
CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...
- bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)
Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...
- BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...
- hdu6397 Character Encoding 隔板法+容斥原理+线性逆元方程
题目传送门 题意:给出n,m,k,用m个0到n-1的数字凑出k,问方案数,mod一个值. 题目思路: 首先如果去掉数字范围的限制,那么就是隔板法,先复习一下隔板法. ①k个相同的小球放入m个不同的盒子 ...
- CF451E Devu and Flowers 数论
正解:容斥+Lucas定理+组合数学 解题报告: 传送门! 先mk个我不会的母函数的做法,,, 首先这个题的母函数是不难想到的,,,就$\left ( 1+x_{1}^{1}+x_{1}^{2}+. ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
随机推荐
- mysql在linux下的安装
安装环境:系统是 centos6.5 1.下载 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downloads 下载版本:我这里选择的5.6. ...
- 使用Sqlserver更新锁防止数据脏读
有时候我们需要控制某条记录在程序读取后就不再进行更新,直到事务执行完释放后才可以.这时候我们就可以将所有要操作当前记录的查询加上更新锁,以防止查询后被其它事务修改.这种操作只锁定表中某行而不会锁定整个 ...
- PKCS#1规范阅读笔记1--------基本概念
规范中有很多数学相关的推演和计算,并不打算在这里介绍,主要介绍一下相关的计算流程及最终的签名结果. 算法可以分为:对称算法和非对称算法两大类.对称算法加密和解密都用的是同一个密钥:而非对称算法却是有一 ...
- 【小白的CFD之旅】13 敲门实例【续3】
接上文[小白的CFD之旅]12 敲门实例[续2] 4 Results4.1 计算监测图形4.2 Graphics4.2.1 壁面温度分布4.2.2 创建截面4.2.3 显示截面物理量4.2.4 Pat ...
- OpenFlow:Enabling Innovation in Campus Networks
SDN领域,OpenFLow现在已经成为了广泛使用的南向接口协议.若想好好学习SDN,在这个领域有所进步,需要熟悉OpenFlow协议.我最近找了篇有关OpenFLow的论文,发现最早该协议是在Sig ...
- httpd配置.md
httpd-2.2 配置 监听端口和IP 配置文件: Listen [IP:]PORT 省略IP表示为0.0.0.0 Listen指令可重复出现多次 修改监听socket,重启服务进程方可生效 可以监 ...
- img图片自适应div盒子,前提是不要把盒子的高给写死了,就是不要写高,如下
div{width:100%;}//写高就自适应盒子不起来了 img{width: 100%; height: 100%;}
- Python-09-paramiko模块
开发堡垒机之前,先来学习一下Python的paramiko模块,该模块基于SSH用于连接远程服务器并执行相关操作. SSHClient 用于连接远程服务器并执行基本命令 基于用户名密码连接 impor ...
- JS处理四舍五入函数 toFixed(n)(可取小数点后n位)
在JS中四舍五入的函数 toFixed(n) , n为要保留的小数位数. n为0~20,当n超过20的时候,JS会出错. 如果小数点前和要截取的前一位都是0时,不会按常理截取. var h ...
- jquey on
1.如果你的元素是用clone方法复制出来的,并且,用了on来绑定事件的话,必须在clone的后边添加true,负责你的事件不会生效. 2.必须在on $('.js-liubody').on('cli ...