hdu 3861 The King’s Problem trajan缩点+二分图匹配
The King’s Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
3 2
1 2
1 3
题意:给你n个点,m条边,可以将一个单联通分量缩成一个点,最少能分成几个点;
思路:先将强连通分量缩点,强连通肯定是可以合并成一个点,然后求无环DAG图的最小路径覆盖即可;
#include<iostream>
#include<cstdio>
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<bitset>
using namespace std;
#define LL unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x) cout<<"bug"<<x<<endl;
const int N=5e3+,M=1e5+,inf=1e9+;
const LL INF=1e18+,mod=; struct is
{
int u,v;
int next;
}edge[M];
int head[N];
int belong[N];
int dfn[N];
int low[N];
int stackk[N<<];
int instack[N];
int number[N];
int n,m,jiedge,lu,bel,top;
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int x)
{
dfn[x]=low[x]=++lu;
stackk[++top]=x;
instack[x]=;
for(int i=head[x];i;i=edge[i].next)
{
if(!dfn[edge[i].v])
{
dfs(edge[i].v);
low[x]=min(low[x],low[edge[i].v]);
}
else if(instack[edge[i].v])
low[x]=min(low[x],dfn[edge[i].v]);
}
if(low[x]==dfn[x])
{
int sum=;
bel++;
int ne;
do
{
sum++;
ne=stackk[top--];
belong[ne]=bel;
instack[ne]=;
}while(x!=ne);
number[bel]=sum;
}
}
void tarjan()
{
memset(dfn,,sizeof(dfn));
bel=lu=top=;
for(int i=;i<=n;i++)
if(!dfn[i])
dfs(i);
}
void init()
{
memset(head,,sizeof(head));
jiedge=;
}
vector<int> g[N];
int cy[N];
bool vis[N];
bool dfs1(int u){
for(int i=; i<g[u].size(); ++i){
int v = g[u][i];
if(vis[v]) continue;
vis[v] = true;
if(cy[v]==- || dfs1(cy[v])){
cy[v] = u;
return true;
}
}
return false;
}
int solve(int n){
int ret = ;
memset(cy, -, sizeof(cy));
for(int i=;i<=n;++i){
memset(vis, , sizeof(vis));
ret += dfs1(i);
}
return n - ret;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
g[i].clear();
for(int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
}
tarjan();
for(int i=;i<=jiedge;i++)
{
if(belong[edge[i].v]!=belong[edge[i].u])
{
g[belong[edge[i].u]].push_back(belong[edge[i].v]);
}
}
int ans=solve(bel);
printf("%d\n",ans);
}
return ;
}
hdu 3861 The King’s Problem trajan缩点+二分图匹配的更多相关文章
- HDU 3861 The King’s Problem (强连通缩点+DAG最小路径覆盖)
<题目链接> 题目大意: 一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.所有点只能属于一块区域:2,如果两点相互可达,则这两点必然要属于同一区域:3,区域内任意两点 ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
- HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861.The King’s Problem 强联通分量+最小路径覆盖
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu——3861 The King’s Problem
The King’s Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...
- HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...
- HDU 3861 The King’s Problem(强连通分量+最小路径覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意: 在csdn王国里面, 国王有一个新的问题. 这里有N个城市M条单行路,为了让他的王国 ...
- hdu 3861 The King’s Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
随机推荐
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- [转载]Oracle数据库 sql%found,sql%notfound,sql%rowcount
sql%found,sql%notfound,sql%rowcount 在执行DML(insert,update,delete)语句时,可以用到以下三个隐式游标(游标是维护查询结果的内存中的一个区域, ...
- Python爬虫_Selenium与PhantomJS
Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开发的,最初是为网站自动化测试而开发的,类型像我们玩游戏用的按键精灵,可以按指定的命令自动化操作,不同是Selenium可以直接运 ...
- 使用隐含参数testMappingSpeed排查GoldenGate抽取慢的步骤
OGG经典抽取模式读取redo慢的检查步骤,可以采用以下几个步骤来排查. 步骤一,确认是否抽取进程的写入有问题 1. 在原有抽取进程上,执行如下命令,统计抽取进程的效率 GGSCI> stats ...
- JavaScript 条件判断算法综合实战
在赌场21点游戏中,玩家可以通过计算牌桌上已经发放的卡牌的高低值来让自己在游戏中保持优势,这就叫21点算法. 根据下面的表格,每张卡牌都分配了一个值.如果卡牌的值大于0,那么玩家应该追加赌注.反之,追 ...
- rhel 6 version `GLIBC_2.14' not found (required by /usr/lib64/libstdc++.so.6)以及libstdc++.so.6: version GLIBCXX_3.4.18 not found解决办法
最近在oracle linux 7.3下开发了个应用,发布到rhel 6.5运行的时候,报version `GLIBC_2.14' not found (required by /usr/lib64/ ...
- mysql同步之otter/canal环境搭建完整详细版
接上一篇mysql 5.7多源复制(用于生产库多主库合并到一个查询从库). 这一篇详细介绍otter/canal环境搭建以及当同步出现异常时如何排查.本文主要参考https://blog.csdn.n ...
- jmeter的使用
jmeter:java开发的开源的性能测试工具. *jmeter返回中文乱码: 1.在jmeter的bin目录下,找到jmeter的配置文件,jmeter.properties,然后把samplere ...
- Codeforces Round #439 (Div. 2) Problem A (Codeforces 869A) - 暴力
Rock... Paper! After Karen have found the deterministic winning (losing?) strategy for rock-paper-sc ...
- 【Python028--引入文件】
一.打开文件 1.open()函数 打开模式 执行操作 ‘r’ 以只读方式打开文件(默认) ‘w’ 以写入的方式打开文件,会覆盖已存在的文件 ‘x’ 如果文件已经存在,使用此模式打开将引发异常 ...