dropout 是神经网络用来防止过拟合的一种方法,很简单,但是很实用。

基本思想是以一定概率放弃被激活的神经元,使得模型更健壮,相当于放弃一些特征,这使得模型不过分依赖于某些特征,即使这些特征是真实的,当然也可能是假的。

大致步骤如下

1. 在神经元 H1 被激活后,随机生成一组数据 U1 和一个0-1的随机数 p

  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = np.random.rand(*H1.shape) < p 
2. U1中小于p的被置1,大于p的被置0
  H1 *= U1 
  p 越大,被置1的越多,被保留的神经元越多
  
这种方法只能用在训练过程,测试过程不能使用,你非要使用,也可以。
因为训练是为了得到一个稳定的模型,但是测试时是实实在在的个体,是什么,理论上预测就是什么,如果你丢掉部分特征,那就是其他个体了,或者一会是A,一会是B,导致输出不稳定。
 
tf会自动处理dropout的使用场景,即tf已经设定在训练时使用dropout,测试时不使用。

卷积神经网络-Dropout的更多相关文章

  1. TensorFlow之CNN:运用Batch Norm、Dropout和早停优化卷积神经网络

    学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用B ...

  2. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  3. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 卷积神经网络提取特征并用于SVM

    模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...

  5. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  6. lecture5-对象识别与卷积神经网络

    Hinton第五课 突然不知道object recognition 该翻译成对象识别好,还是目标识别好,还是物体识别好,但是鉴于范围性,还是翻译成对象识别吧.这一课附带了两个论文<Convolu ...

  7. [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)

    3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...

  8. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  9. TensorFlow框架(4)之CNN卷积神经网络

    1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...

随机推荐

  1. HDOJ-1806 ( Frequent values ) 线段树区间合并

    http://acm.hdu.edu.cn/showproblem.php?pid=1806 线段树维护区间出现频率最高的出现次数.为了维护上者,需要维护线段前后缀的出现次数,当和其他线段在端点处的字 ...

  2. hadoop ssh 端口-ssh-copy-id详解

    ssh-copy-id详解 http://www.blogdaren.com/post-1815.html 服务器时常需要配置无密码的登录方式,最一般的设置方式如下: 使用ssh-keygen和ssh ...

  3. Tree总结

    树结构问题因为容易写出解法,因此经常出现在面试题中 1. 树的种类 1) Tree 2) Binary Trees 3) Binary Search Trees(BST) : used to sort ...

  4. 第二阶段——个人工作总结DAY04

    1.昨天做了什么:实现所有需要跳转活动的点击事件. 2.今天打算做什么:打算把值能够传递过去. 3.遇到的困难:无

  5. mybatis使用@param("xxx")注解传参和不使用的区别

    public interface SystemParameterMapper { int deleteByPrimaryKey(Integer id); int insert(SystemParame ...

  6. MongoDB 教程(二):MongoDB 简介

    概述: MongoDB 旨在为WEB应用提供可扩展.高性能的数据存储解决方案. MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成. MongoDB 文档类似于 ...

  7. python中RabbitMQ的使用(交换机,广播形式)

    简介 如果要让每个接收端都能收到消息,此时需要将消息广播出去,需要使用交换机. 工作原理 消息发送端先将消息发送给交换机,交换机再将消息发送到绑定的消息队列,而后每个接收端都能从各自的消息队列里接收到 ...

  8. button disable and enable

    1. disable <button id="buttonId" disabled>......</button> $("#buttonId&qu ...

  9. 解决iOS第三方SDK之间重复的symbols问题

    前言:今天公司项目准备使用高德导航,其中用到了高德3D地图SDK,然后就出现bug了.在真机上可以完美运行,但是在模拟器上,就出现了一大片的bug:提示有82个Duplicate symbols,仔细 ...

  10. Windows设置.txt文件默认打开程序

    一.配置某个程序默认打开哪些类型的文件(以firefox为例) 依次打开”控制面板\程序\默认程序“,点击”设置默认程序“ 在右侧列表找到firefox,选中 以firefox为例,”将此程序设置为默 ...