Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his motherland — Uzhlyandia.

It is widely known that Uzhlyandia has n cities connected with m bidirectional roads. Also, there are no two roads in the country that connect the same pair of cities, but roads starting and ending in the same city can exist. Igor wants to plan his journey beforehand. Boy thinks a path is good if the path goes over m - 2 roads twice, and over the other 2 exactly once. The good path can start and finish in any city of Uzhlyandia.

Now he wants to know how many different good paths are in Uzhlyandia. Two paths are considered different if the sets of roads the paths goes over exactly once differ. Help Igor — calculate the number of good paths.

Input

The first line contains two integers nm (1 ≤ n, m ≤ 106) — the number of cities and roads in Uzhlyandia, respectively.

Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) that mean that there is road between cities u and v.

It is guaranteed that no road will be given in the input twice. That also means that for every city there is no more than one road that connects the city to itself.

Output

Print out the only integer — the number of good paths in Uzhlyandia.

Examples
input
5 4
1 2
1 3
1 4
1 5
output
6
input
5 3
1 2
2 3
4 5
output
0
input
2 2
1 1
1 2
output
1
Note

In first sample test case the good paths are:

  • 2 → 1 → 3 → 1 → 4 → 1 → 5,
  • 2 → 1 → 3 → 1 → 5 → 1 → 4,
  • 2 → 1 → 4 → 1 → 5 → 1 → 3,
  • 3 → 1 → 2 → 1 → 4 → 1 → 5,
  • 3 → 1 → 2 → 1 → 5 → 1 → 4,
  • 4 → 1 → 2 → 1 → 3 → 1 → 5.

There are good paths that are same with displayed above, because the sets of roads they pass over once are same:

  • 2 → 1 → 4 → 1 → 3 → 1 → 5,
  • 2 → 1 → 5 → 1 → 3 → 1 → 4,
  • 2 → 1 → 5 → 1 → 4 → 1 → 3,
  • 3 → 1 → 4 → 1 → 2 → 1 → 5,
  • 3 → 1 → 5 → 1 → 2 → 1 → 4,
  • 4 → 1 → 3 → 1 → 2 → 1 → 5,
  • and all the paths in the other direction.

Thus, the answer is 6.

In the second test case, Igor simply can not walk by all the roads.

In the third case, Igor walks once over every road.


  题目大意 给定一个有n个顶点和m条边的无向图,问有多少条路径使得恰好(m - 2)条边被经过2次,2条边恰好被经过1次。两条路径被看做不同的,当且仅当它们经过的边的集合不同。

  原问题可以转换为将每条边复制一下,然后再删去两条边使得新图存在欧拉路的方案数。

  欧拉路存在的两个条件是

  1)只存在一个连通块包含的边数大于0

  2)度数为奇数的点少于2个。

  暂时先不考虑自环的情况,然后可以得到一个结论就是:这两条边的必须存在公共顶点。

  然后可以得到一个做法就是枚举每个点,计算和它相连的边中,任选两条的方案数。

  现在考虑自环,删掉一个自环使得这个顶点的度数仍然为偶数,所以选取的一条边包含自环,那么另一条边可以任意选。

  为了更好地计数,暂时不把自环算入度数,最后统一计算。然后会出现选择的两条边都是自环被计算2次的情况,所以减一减就好了。

Code

 /**
* Codeforces
* Problem#789D
* Accepted
* Time: 421ms
* Memory: 37400k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; int n, m;
int *dag;
int* f;
int scc = ;
boolean *haveedge; int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} inline void init() {
scanf("%d%d", &n, &m);
dag = new int[(n + )];
f = new int[(n + )];
haveedge = new boolean[(n + )];
memset(dag, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++)
f[i] = i, haveedge[i] = false;
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
dag[u] += u != v, dag[v] += u != v;
haveedge[u] = haveedge[v] = true;
scc += u == v;
f[find(u)] = find(v);
}
} long long res = ;
int cnt = ;
inline void solve() {
for(int i = ; i <= n; i++) {
res += (dag[i] * 1LL * (dag[i] - )) >> ;
cnt += f[i] == i && haveedge[i];
}
printf(Auto"\n", (cnt == ) ? (res + (scc * 1LL * (m - )) - ((scc * 1LL * (scc - )) >> )) : ());
} int main() {
init();
solve();
return ;
}

Codeforces 789D Weird journey - 欧拉路 - 图论的更多相关文章

  1. CodeForces - 788B Weird journey 欧拉路

    题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次  2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...

  2. Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  3. CodeForces - 789D Weird journey

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  4. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  5. 【cf789D】Weird journey(欧拉路、计数)

    cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...

  6. Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图

    题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...

  7. codeforces 407 div1 B题(Weird journey)

    codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...

  8. Weird journey CodeForces - 788B (路径计数)

    大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...

  9. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

随机推荐

  1. 原来CNN是这样提取图像特征的。。。

    对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学 ...

  2. RN项目中使用react-native-elements报错: Unrecognized font family 'Material Icons'

    查询了一些方案,但各自的环境不尽相同,最后在google中找到了答案.主要问题在于 (1)版本问题 (2)Xcode配置问题 报错如下 解决步骤: 1 . 首先需要正确安装 npm i -S reac ...

  3. js中call,caller,callee,aplly

    1.函数的caller属性 (1).区分函数是在函数体调用还是顶层代码中调用:顶层中调用函数,该函数的caller属性返回null,在函数中调用,会返回调用发i函数的函数: <script> ...

  4. itextsharp display:none无效的bug

    在使用itextsharp实现 html 2 pdf时,发现display:none无效.如 <div style="display: none">应该隐藏</d ...

  5. 面向对象的多态性(C++)

    以C++为例三大特效:封装.继承.多态,面向对象的编程语言都具有这些特性. 那么本节来谈谈多态性,尽量说的简单些容易理解! 多态什么意思?即运行时多态,以相同的方式处理不同类型的对象,产生不同的结果! ...

  6. sitecore系列教程之改进Sitecore编辑体验的5个步骤

    Sitecore完全关注客户体验,在适当的时间为合适的人提供合适的体验.虽然没有人会不同意客户体验是王道,但我们仍然需要记住每天使用Sitecore的人们为客户带来惊人体验的体验. 我看到无数客户通过 ...

  7. .net nancy

    官网 文档 入门教程 参考

  8. QPushButton 控制两种状态

    [1]Custom.cpp #include "CustomButton.h" CustomButton::CustomButton(QWidget* parent) : QPus ...

  9. C++11 Function 使用场景

    [1]场景分析 在一个函数内部,可能会多次用到某一段代码,一般情况是把这段用到次数较多的代码封装成一个函数. 但是,如果这段代码仅仅只在这个函数中有使用,这时封装成函数显得既麻烦又冗赘. 那么,有没有 ...

  10. vue-cli 脚手架搭建

    1,下载node.js node.js 集成npm 管理器 2,打开命令行工具(win+R) node -v npm -v 出现对应版本号,则安装完成 3,配置代理信息 详见代理设定:https:// ...