题目传送门

  需要验证权限的传送门

题目大意

  Alice和Bob轮流取$n$个正整数,Alice先进行操作。每次每人可以取任意多的数,得分是这一次取的所有数中的最小值。Alice和Bob都足够聪明,他们的策略都是让自己的得分减去对方的得分尽量大。问最终Alice的得分减去Bob的得分。

  因为与顺序无关,所以考虑贪一下心。

  因为使得分劲量大,所以肯定先把大的数取走。

  又因为一次取的得分是所有取的数中的最小值,所以取走的数是排序后的连续的一段。否则对方可以取你间断的那一个数,这样显然不优。

  所以用$f[i]$表示取走前$i$大后,Alice的得分减去Bob的得分,但是这样无法确定转移时谁在操作。

  因此把这个游戏过程倒过来dp,用$f[i]$表示在前$i$小中进行游戏,先手减去后手的得分。

  转移枚举剩下的局面就行了。

  然后这样转移$O(n^{2})$。但是发现dp式子蜜汁雷同:$f[i] = \max_{j = 1}^{i - 1} \{f[j] + a_{j + 1}\}$

  直接记一个东西就可以$O(1)$转移了。

  时间复杂度$O(n\log n)$

Code

 /**
* bzoj
* Problem#2091
* Accepted
* Time: 1440ms
* Memory: 13016k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std; #define ll long long int n;
ll *f;
int *ar; inline void init() {
scanf("%d", &n);
f = new ll[(n + )];
ar = new int[(n + )];
for (int i = ; i <= n; i++)
scanf("%d", ar + i);
} inline void solve() {
sort(ar + , ar + n + );
f[] = ar[];
for (int i = ; i <= n; i++)
f[i] = max(f[i - ], ar[i] - f[i - ]);
printf(Auto"\n", f[n]);
} int main() {
init();
solve();
return ;
}

bzoj 2091 The Minima Game - 动态规划 - 博弈论的更多相关文章

  1. bzoj 2091: [Poi2010]The Minima Game【博弈论+贪心+dp】

    不知道算不算博弈 很妙的贪心,一直在想SG函数结果... 首先从大到小排个序,然后考虑当前的人要怎么选:如果不选最后一段,那么另一人会选,这样不利于当前的人,所以每个人一定会选最后一段 设f[i]为要 ...

  2. BZOJ 2091: [Poi2010]The Minima Game

    Description 每次可以任取数字,使用最优策略让差最大. Sol DP. 一开始我写了个单调队列贪心,然后狂WA不止... 正着做有后效性,因为前面的决策无法保证在后面是最优秀的,但如果倒这做 ...

  3. BZOJ 2091: [Poi2010]The Minima Game 博弈dp

    十分有趣的问题. 我们发现如果拿的话肯定要先拿一些大的. 所以我们可以先将所有数从小到大排序,令 $f[i]$ 表示拿完前 $i$ 小先手-后手的最大值. 则有转移:$f[i]=max(f[i-1], ...

  4. bzoj 3875 骑士游戏 - spfa - 动态规划

    Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,J ...

  5. bzoj 4033 树上染色 - 树形动态规划

    有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑 色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的 ...

  6. bzoj 5283: [CodePlus 2018 3 月赛]博弈论与概率统计

    Description 大家的好朋友小 L 来到了博弈的世界.Alice 和 Bob 在玩一个双人游戏.每一轮中,Alice 有 p 的概率胜利,1 -p 的概率失败,不会出现平局.双方初始时各有 0 ...

  7. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  8. bzoj 1835 base 基站选址 - 动态规划 - 线段树

    题目传送门 需要高级权限的传送门 题目大意 有$n$个村庄坐落在一条直线上,第$i \ \ \ (i>1)$个村庄距离第$1$个村庄的距离为$D_i$.需要在这些村庄中建立不超过$K$个通讯基站 ...

  9. bzoj 2216 Lightning Conductor - 二分法 - 动态规划

    题目传送门 需要root权限的传送门 题目大意 给定一个长度为$n$的数组,要求对每个$1 \leqslant i \leqslant n$找到最小整数的$p$,对于任意$j$满足使得$a_{i} + ...

随机推荐

  1. 文档设计也需要坚持DRY原则--支付中心应用部署结构图完善

    今天上午,我拿着支付中心的设计文档,给入职不久的同事讲解目前支付中心系统的应用部署情况.当时同事嗯嗯地点头反应. 下午呢,发现自己设计的有问题,赶紧给予完善. 代码重构方面讲究DRY编程原则.我们在设 ...

  2. MySQL-UNIQUE

    什么是UNIQUE约束 可以使用 UNIQUE 约束确保在非主键列中不输入重复的值.尽管 UNIQUE 约束和 PRIMARY KEY 约束都强制唯一性,但想要强制一列或多列组合(不是主键)的唯一性时 ...

  3. UVA 10256 The Great Divide(点在多边形内)

    The Great Divid [题目链接]The Great Divid [题目类型]点在多边形内 &题解: 蓝书274, 感觉我的代码和刘汝佳的没啥区别,可是我的就是wa,所以贴一发刘汝佳 ...

  4. JAVA_Stream_练习

    package airycode_java8.nice7; import airycode_java8.nice1.Employee; import org.junit.Test; import ja ...

  5. 关于kingoroot这款软件

    弃了饱受诟病的kingroot系列的软件,又出现了一款名为kingoroot的软件. 大约一年之前用过kingoroot的apk版,成功为我的手机root了,而且其行为也并不是那么流氓,所以当时对其很 ...

  6. MySQL创建外键约束的报错Error : Can't create table '#sql-534_185' (errno: 150)

    总得来说是因为两个表的字段类型不一致,例如: 两个字段的类型或大小不严格匹配,一个为tinyint,另一个为char:或一个为int(10)另一个为int(9)也是不行的,即使都为int(10),但一 ...

  7. python 正则基本方法

    2017-04-11 学习python,免不了应对爬虫,初学爬虫最难理解的就是正则表达式. 比如我们要爬去网页上的某些内容,就像下面这种形式: <p>safdsf</p>< ...

  8. JavaScript--函数、匿名函数和自执行函数详解

       函数的声明及调用 1.函数的声明格式:        function 函数名([参数1],[参数2],.....){          //函数体代码          [return 返回值 ...

  9. Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)

    题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...

  10. Eclipse中tomcat更改部署路径 deply path

    默认是部署在项目元数据文件夹.metadata文件夹下,需要更改到tomcat/webapps目录下 Eclipse中tomcat service设置 选择window ----show view-- ...