奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=a*(j - i) + d*h
v=i*(c - k) - j
p=i*j - b*k
q=-i - a*h
i=i+u*t
j=j+v*t
k=k+p*t
h=h+q*t
x=i
y=j [Variables]
a=2.000000
b=0.700000
c=26.000000
d=1.500000
h=0.300000
i=0.100000
j=0.100000
k=0.200000
t=0.001000

混沌图像:

奇怪吸引子---LorenzStenflo的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. SPLAY,LCT学习笔记(五)

    这一篇重点探讨LCT的应用 例:bzoj 2631 tree2(国家集训队) LCT模板操作之一,利用SPLAY可以进行区间操作这一性质对维护懒惰标记,注意标记下传顺序和如何下传 #include & ...

  2. jQuery.TreeView插件实现树状导航(十三)

    一:jQuery.TreeView插件简介 该插件的特点: 1.支持静态的树,即一次性将全部数据加载到客户端. 2.支持异步树,即一次只加载一级或若干级节点,子节点可以异步加载数据. 3.支持节点级联 ...

  3. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  4. 069 Hue协作框架

    一:介绍 1.官网 官网:http://gethue.com/ 下载:http://archive.cloudera.com/cdh5/cdh/5/,只能在这里下载,不是Apache的 手册:http ...

  5. 浮点数在计算机中的表示(IEEE浮点数标准)

    转载自:https://wdxtub.com/2016/04/16/thin-csapp-1/

  6. 前端解读面向切面编程(AOP)

    前言 面向对象(OOP)作为经典的设计范式,对于我们来说可谓无人不知,还记得我们入行起始时那句经典的总结吗-万事万物皆对象. 是的,基于OOP思想封装.继承.多态的特点,我们会自然而然的遵循模块化.组 ...

  7. go语言学习-goroutine

    o 语言有一个很重要的特性就是 goroutine, 我们可以使用 goroutine 结合 channel 来开发并发程序. 并发程序指的是可以同时运行多个任务的程序,这里的同时运行并不一定指的是同 ...

  8. Android 打造自己的ImageLoader

    Android 打造自己的ImageLoader 学习和参考 Android开发艺术探索 https://blog.csdn.net/column/details/15318.html 郭霖大神的Gl ...

  9. 洛谷 P1114 “非常男女”计划

    To 洛谷.1114 “非常男女”计划 题目描述 近来,初一年的XXX小朋友致力于研究班上同学的配对问题(别想太多,仅是舞伴),通过各种推理和实验,他掌握了大量的实战经验.例如,据他观察,身高相近的人 ...

  10. Python图形编程探索系列-03-标签组件(Label)

    跳转到自己的博客 tkinter.Label介绍 什么是标签? 通俗的将就相当于word的功能,能够进行显示不可修改的文字.图片或者图文混排. 直观体会一下 图1 背景图构成:内容区(黑色),填充区( ...