奇怪吸引子---LorenzStenflo
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors
这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*(j - i) + d*h
v=i*(c - k) - j
p=i*j - b*k
q=-i - a*h
i=i+u*t
j=j+v*t
k=k+p*t
h=h+q*t
x=i
y=j [Variables]
a=2.000000
b=0.700000
c=26.000000
d=1.500000
h=0.300000
i=0.100000
j=0.100000
k=0.200000
t=0.001000
混沌图像:
奇怪吸引子---LorenzStenflo的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- 执行 crontab 的计划任务
新建了一个 Laravel 的计划任务,配置好 crontab * * * * * php /www/sunzhongwei/artisan schedule:run >> /dev/nu ...
- cf777c 模拟
水题 /* 按列扫描一次矩阵,每个行向上最长sort长度即可 */ #include<bits/stdc++.h> using namespace std; #define ll long ...
- springMVC源码分析--页面跳转RedirectView(三)
之前两篇博客springMVC源码分析--视图View(一)和springMVC源码分析--视图AbstractView和InternalResourceView(二)中我们已经简单的介绍了View相 ...
- 步步为营-35-SQL语言基础
SQL 结构化查询语言(Structured Query Language) DDL DML DCL 在此不再对其进行详细解释 1 DDL 数据库定义语言 1.1 创建数据库脚本 --DDL crea ...
- k8s 环境搭建
转自:https://blog.csdn.net/running_free/article/details/78388948 一.概述 1.简介 官方中文文档:https://www.kubernet ...
- 10.Django用户认证组件
用户认证组件: 功能:用session记录登录验证状态: 前提:用户表,django自带的auth_user 创建超级用户:python manage.py createsuperuser ...
- 第一篇:fastadmin的页面是如何生成的?
第一步: 访问URL http://www.fastadmin.cc/admin/mydir/test/index?addtabs=1 对应的方法是admin模块,controller文件夹下的myd ...
- 从零搭建ES搜索服务(一)基本概念及环境搭建
一.前言 本系列文章最终目标是为了快速搭建一个简易可用的搜索服务.方案并不一定是最优,但实现难度较低. 二.背景 近期公司在重构老系统,需求是要求知识库支持全文检索. 我们知道普通的数据库 like ...
- Redis分布式锁实现方式(附有正解及错误示例)
一.前言 本文内容主要来自博客:https://wudashan.com/2017/10/23/Redis-Distributed-Lock-Implement/,本文用于归纳总结及笔记用途,如有需要 ...
- Docker备忘录
centOS安装教程:https://docs.docker-cn.com/engine/installation/linux/docker-ce/centos/ 一.常用命令 docker buil ...