mysql 锁2
官网地址
https://dev.mysql.com/doc/refman/5.5/en/innodb-transaction-isolation-levels.html
这里主要是说事务隔离级别,以及对锁的影响
Transaction isolation is one of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results when multiple transactions are making changes and performing queries at the same time.
InnoDB
offers all four transaction isolation levels described by the SQL:1992 standard: READ UNCOMMITTED
, READ COMMITTED
, REPEATABLE READ
, and SERIALIZABLE
. The default isolation level for InnoDB
is REPEATABLE READ
.
A user can change the isolation level for a single session or for all subsequent connections with the SET TRANSACTION
statement. To set the server's default isolation level for all connections, use the --transaction-isolation
option on the command line or in an option file. For detailed information about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.
InnoDB
supports each of the transaction isolation levels described here using different locking strategies. You can enforce a high degree of consistency with the default REPEATABLE READ
level, for operations on crucial data where ACID compliance is important. Or you can relax the consistency rules with READ COMMITTED
or even READ UNCOMMITTED
, in situations such as bulk reporting where precise consistency and repeatable results are less important than minimizing the amount of overhead for locking. SERIALIZABLE
enforces even stricter rules than REPEATABLE READ
, and is used mainly in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.
The following list describes how MySQL supports the different transaction levels. The list goes from the most commonly used level to the least used.
REPEATABLE READ
This is the default isolation level for
InnoDB
. Consistent reads within the same transaction read the snapshot established by the first read. This means that if you issue several plain (nonlocking)SELECT
statements within the same transaction, theseSELECT
statements are consistent also with respect to each other. See Section 14.8.2.3, “Consistent Nonlocking Reads”.For locking reads (
SELECT
withFOR UPDATE
orLOCK IN SHARE MODE
),UPDATE
, andDELETE
statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition.For a unique index with a unique search condition,
InnoDB
locks only the index record found, not the gap before it.For other search conditions,
InnoDB
locks the index range scanned, using gap locks or next-key locks to block insertions by other sessions into the gaps covered by the range. For information about gap locks and next-key locks, see Section 14.8.1, “InnoDB Locking”.
READ COMMITTED
Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. For information about consistent reads, see Section 14.8.2.3, “Consistent Nonlocking Reads”.
For locking reads (
SELECT
withFOR UPDATE
orLOCK IN SHARE MODE
),UPDATE
statements, andDELETE
statements,InnoDB
locks only index records, not the gaps before them, and thus permits the free insertion of new records next to locked records. Gap locking is only used for foreign-key constraint checking and duplicate-key checking.Because gap locking is disabled, phantom problems may occur, as other sessions can insert new rows into the gaps. For information about phantoms, see Section 14.8.4, “Phantom Rows”.
If you use
READ COMMITTED
, you must use row-based binary logging.Using
READ COMMITTED
has additional effects:For
UPDATE
orDELETE
statements,InnoDB
holds locks only for rows that it updates or deletes. Record locks for nonmatching rows are released after MySQL has evaluated theWHERE
condition. This greatly reduces the probability of deadlocks, but they can still happen.For
UPDATE
statements, if a row is already locked,InnoDB
performs a “semi-consistent” read, returning the latest committed version to MySQL so that MySQL can determine whether the row matches theWHERE
condition of theUPDATE
. If the row matches (must be updated), MySQL reads the row again and this timeInnoDB
either locks it or waits for a lock on it.
Consider the following example, beginning with this table:
CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;
In this case, table has no indexes, so searches and index scans use the hidden clustered index for record locking (see Section 14.11.2.1, “Clustered and Secondary Indexes”).
Suppose that one client performs an UPDATE
using these statements:
SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;
Suppose also that a second client performs an UPDATE
by executing these statements following those of the first client:
SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;
As InnoDB
executes each UPDATE
, it first acquires an exclusive lock for each row, and then determines whether to modify it. If InnoDB
does not modify the row, it releases the lock. Otherwise, InnoDB
retains the lock until the end of the transaction. This affects transaction processing as follows.
When using the default REPEATABLE READ
isolation level, the first UPDATE
acquires x-locks and does not release any of them:
x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock
The second UPDATE
blocks as soon as it tries to acquire any locks (because first update has retained locks on all rows), and does not proceed until the first UPDATE
commits or rolls back:
--comment: REPEATABLE-READ级别的情况下,由于所有记录没有索引,扫描所有记录的时候不管是否匹配条件,这些记录都被锁上
x-lock(1,2); block and wait for first UPDATE to commit or roll back
If READ COMMITTED
is used instead, the first UPDATE
acquires x-locks and releases those for rows that it does not modify:
--comment: 而在READ-COMMITTED级别的情况,同样会扫描所有记录并对所有记录上锁,但会对比匹配的记录解锁
x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)
For the second UPDATE
, InnoDB
does a “semi-consistent” read, returning the latest committed version of each row to MySQL so that MySQL can determine whether the row matches the WHERE
condition of the UPDATE
:
x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock
The effects of using the
READ COMMITTED
isolation level are the same as enabling theinnodb_locks_unsafe_for_binlog
configuration option, with these exceptions:Enabling
innodb_locks_unsafe_for_binlog
is a global setting and affects all sessions, whereas the isolation level can be set globally for all sessions, or individually per session.innodb_locks_unsafe_for_binlog
can be set only at server startup, whereas the isolation level can be set at startup or changed at runtime.
READ COMMITTED
therefore offers finer and more flexible control thaninnodb_locks_unsafe_for_binlog
.READ UNCOMMITTED
SELECT
statements are performed in a nonlocking fashion, but a possible earlier version of a row might be used. Thus, using this isolation level, such reads are not consistent. This is also called a “dirty read.” Otherwise, this isolation level works likeREAD COMMITTED
.SERIALIZABLE
This level is like
REPEATABLE READ
, butInnoDB
implicitly converts all plainSELECT
statements toSELECT ... LOCK IN SHARE MODE
ifautocommit
is disabled. Ifautocommit
is enabled, theSELECT
is its own transaction. It therefore is known to be read only and can be serialized if performed as a consistent (nonlocking) read and need not block for other transactions. (To force a plainSELECT
to block if other transactions have modified the selected rows, disableautocommit
.)
mysql 锁2的更多相关文章
- mysql锁
锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数 ...
- Mysql锁初步
存储引擎 要了解mysql的锁,就要先从存储引擎说起. 常用存储引擎列表如下图所示: 最常使用的两种存储引擎: Myisam是Mysql的默认存储引擎.当create创建新表时,未指定新表的存储引擎时 ...
- mysql锁表机制及相关优化
(该文章为方便自己查阅,也希望对大家有所帮助,转载于互联网) 1. 锁机制 当前MySQL支持 ISAM, MyISAM, MEMORY (HEAP) 类型表的表级锁,BDB 表支持页级锁,InnoD ...
- MySQL锁系列3 MDL锁
http://www.cnblogs.com/xpchild/p/3790139.html MySQL为了保护数据字典元数据,使用了metadata lock,即MDL锁,保证在并发的情况下,结构 ...
- 01 MySQL锁概述
锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O 等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有 ...
- Mysql锁机制介绍
Mysql锁机制介绍 一.概况MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制.比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking ...
- MySQL锁等待分析【2】
MySQL锁等待分析[1]中对锁等待的分析是一步一步来的.虽然最后是分析出来了,可是用时是比较长的:理清各个表之间的关系后,得到如下SQL语句,方便以后使用 select block_trx.trx_ ...
- MySQL锁与MVCC
--MySQL锁与MVCC --------------------2014/06/29 myisam表锁比较简单,这里主要讨论一下innodb的锁相关问题. innodb相比oracle锁机制简单许 ...
- MySQL锁总结
本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/78 MySQL 锁基础 参考了何登成老师文章的结构MySQL 加 ...
- Mysql锁机制--并发事务带来的更新丢失问题
Mysql 系列文章主页 =============== 刚开始学习 Mysql 锁的时候,觉得 Mysql 使用的是行锁,再加上其默认的可重复读的隔离级别,那就应该能够自动解决并发事务更新的问题.可 ...
随机推荐
- C++数组排序
#include<stdio.h> #include<stdlib.h> #include<windows.h> #define SIZE 5 //数组中元素的数量 ...
- PHP黑魔法(该篇文章转自:http://www.91ri.org/12634.html 目的是作为自己的笔记方便查找)
那些年我们学过的PHP黑魔法 作者:Matrix_ling 序 这里必须得说一下==和===这俩货的重要性.==是比较运算,它不会去检查条件式的表达式的类型===是恒等,它会检查查表达式的值与类型是否 ...
- 快速挂载iso文件到虚拟机系统
在vm软件菜单栏那里选择vm,再选择弹出菜单最下面的设置,如图,找到实体机上的iso文件,保存. 这时候,在虚拟机ls /dev会发现有一个cdrom,这个就是我们的iso文件,不过我们还需要把它挂载 ...
- python基础(五)——CGI编程
使用python实现get方法和post方法传值,多选按钮,单选按钮.文本编辑区.下拉列表数据的传递,cookie的设置文件上传,文件下载.本文未经整理,仅供参考 #!/usr/bin/python ...
- gogs wekan 集成试用
wekan 官方提供了一个集成gogs 的扩展,不是完全的自动化,需要结合cli,但是官方的cli 写的...(不是很全) 备注: 测试环境使用docker-compose 环境准备 docker-c ...
- DevExpress开发win8风格界面
由于近期在对项目软件界面进行优化,找到了一款效果挺炫的插件,DevExpress15.2,可以制作win8可以滑动图标那个界面的效果,不多说,先贴图: (你没看错,这是用C#winform实现的) 可 ...
- 是“帐”还是“账” --- 由 FastAdmin 用户中心引出的讨论
是"帐"还是"账" --- 由 FastAdmin 用户中心引出的讨论 有小伙伴对 FastAdmin 用户中心的"账号"提出异议,应该为& ...
- Java Dom4j XML用法总结
1.新建XML文档: Document doc = DocumentHelper.createDocument(); Element root = d ...
- Redis 多个数据库
注意:Redis支持多个数据库,并且每个数据库的数据是隔离的不能共享,并且基于单机才有,如果是集群就没有数据库的概念. Redis是一个字典结构的存储服务器,而实际上一个Redis实例提供了多个用来存 ...
- flume-ng-sql-source实现oracle增量数据读取
一.下载编译flume-ng-sql-source 下载地址:https://github.com/keedio/flume-ng-sql-source.git ,安装说明文档编译和拷贝jar包 嫌麻 ...