转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/17/2964858.html

在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数。参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html。要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟。例如本程序中个就用到了特征值的6次方来求解。

  实验基础:

  contour:

  该函数是绘制轮廓线的,比如程序中的contour(u, v, z, [0, 0], 'LineWidth', 2),指的是在二维平面U-V中绘制曲面z的轮廓,z的值为0,轮廓线宽为2。注意此时的z对应的范围应该与U和V所表达的范围相同。因为contour函数是用来等高线,而本实验中只需画一条等高线,所以第4个参数里面的值都是一样的,这里为[0,0],0指的是函数值z在0和0之间的等高线(很明显,只能是一条)。

  在logistic回归中,其表达式为:

  

  在此问题中,将特征x映射到一个28维的空间中,其x向量映射后为:

  

  此时加入了规则项后的系统的损失函数为:

  

  对应的牛顿法参数更新方程为:

  

  其中:

  

  公式中的一些宏观说明(直接截的原网页):

  

  实验结果:

  原训练数据点的分布情况:

  

  当lambda=0时所求得的分界曲面:

   

  当lambda=1时所求得的分界曲面:

  

  当lambda=10时所求得的分界曲面:

  

  实验程序代码:

%载入数据
clc,clear,close all;
x = load('ex5Logx.dat');
y = load('ex5Logy.dat'); %画出数据的分布图
plot(x(find(y),),x(find(y),),'o','MarkerFaceColor','b')
hold on;
plot(x(find(y==),),x(find(y==),),'r+')
legend('y=1','y=0') % Add polynomial features to x by
% calling the feature mapping function
% provided in separate m-file
x = map_feature(x(:,), x(:,)); %map_feature函数是什么? [m, n] = size(x); % Initialize fitting parameters
theta = zeros(n, ); % Define the sigmoid function
g = inline('1.0 ./ (1.0 + exp(-z))'); % setup for Newton's method
MAX_ITR = ;
J = zeros(MAX_ITR, ); % Lambda is the regularization parameter
lambda = ;%lambda=,,,修改这个地方,运行3次可以得到3种结果。 % Newton's Method
for i = :MAX_ITR
% Calculate the hypothesis function
z = x * theta;
h = g(z); % Calculate J (for testing convergence)
J(i) =(/m)*sum(-y.*log(h) - (-y).*log(-h))+ ...
(lambda/(*m))*norm(theta([:end]))^; % Calculate gradient and hessian.
G = (lambda/m).*theta; G() = ; % extra term for gradient
L = (lambda/m).*eye(n); L() = ;% extra term for Hessian
grad = ((/m).*x' * (h-y)) + G;
H = ((/m).*x' * diag(h) * diag(1-h) * x) + L; % Here is the actual update
theta = theta - H\grad; end
% Show J to determine if algorithm has converged
J
% display the norm of our parameters
norm_theta = norm(theta) % Plot the results
% We will evaluate theta*x over a
% grid of features and plot the contour
% where theta*x equals zero % Here is the grid range
u = linspace(-, 1.5, );
v = linspace(-, 1.5, ); z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = :length(u)
for j = :length(v)
z(j,i) = map_feature(u(i), v(j))*theta;%这里绘制的并不是损失函数与迭代次数之间的曲线,而是线性变换后的值
end
end
z = z'; % important to transpose z before calling contour % Plot z =
% Notice you need to specify the range [, ]
contour(u, v, z, [, ], 'LineWidth', )%在z上画出为0值时的界面,因为为0时刚好概率为0.,符合要求
legend('y = 1', 'y = 0', 'Decision boundary')
title(sprintf('\\lambda = %g', lambda), 'FontSize', ) hold off % Uncomment to plot J
% figure
% plot(:MAX_ITR-, J, 'o--', 'MarkerFaceColor', 'r', 'MarkerSize', )
% xlabel('Iteration'); ylabel('J')

疑问: 上文中的map_feature是什么函数?

六、regularized logisitic regssion练习(转载)的更多相关文章

  1. 转载 Deep learning:六(regularized logistic回归练习)

    前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在lo ...

  2. 四、Logisitic Regssion练习(转载)

    转载:http://www.cnblogs.com/tornadomeet/archive/2013/03/16/2963919.html 牛顿法:http://blog.csdn.net/xp215 ...

  3. 五、regularized线性回归练习(转载)

    转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/17/2964515.html 前言: 本节主要是练习regularization项的使 ...

  4. 【windows核心编程】 第六章 线程基础

    Windows核心编程 第六章 线程基础 欢迎转载 转载请注明出处:http://www.cnblogs.com/cuish/p/3145214.html 1. 线程的组成 ①    一个是线程的内核 ...

  5. 从ReadImage到ML- 一个不错的博客

    实在对不起原作者,为了不把文章淹没在 转载的海洋里.... 原文链接:     http://www.cnblogs.com/tornadomeet/archive/2012/09/26/270404 ...

  6. [UFLDL] Basic Concept

    博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...

  7. [UFLDL] Linear Regression & Classification

    博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:六(regulariz ...

  8. libcurl 设置代理,通过Fiddler可以进行抓包

    转载:https://blog.csdn.net/jaryguo/article/details/53021923 转载:https://www.cnblogs.com/miantest/p/7289 ...

  9. sql server编写脚本求解第1天1分钱之后每天两倍持续一个月的等比数列问题

    一.问题 问题1 场景:如果你未来的丈母娘要求你,第1天给她1分钱,第2天给2分钱,第3天给4分钱,以此类推,每天给前一天的2倍,给1个月(按30天)算就行.问:第30天给多少钱,总共给多少钱? 问题 ...

随机推荐

  1. UOJ#192. 【UR #14】最强跳蚤

    题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...

  2. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)

    洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...

  3. 数据挖掘(二)用python实现数据探索:汇总统计和可视化

    今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...

  4. 自学Linux Shell1.3-Linux文件系统

    点击返回 自学Linux命令行与Shell脚本之路 1.3-Linux文件系统 文件系统是文件存放在磁盘等存储设备上的组织方法.Linux系统能支持多种目前流行的文件系统,如EXT2. EXT3. F ...

  5. 隐藏SharePoint 2013 team sites里的follow按钮

    cls $featureid = 'a7a2793e-67cd-4dc1-9fd0-43f61581207a'$webapps = Get-spWebApplicationforeach($webap ...

  6. C++类间相互引用

    两个类相互包含引用的问题 不管是下文中提到的例子,还是任何情况,使得class A的头文件需要include class B的头文件,class B的也要引用A的头文件,这种状况下,貌似会出现有一个类 ...

  7. linux动态库与静态库混合连接

      1, 在应用程序需要连接外部库的情况下,linux默认对库的连接是使用动态库,在找不到动态库的情况下再选择静态库.使用方式为: gcc test.cpp -L. -ltestlib 如果当前目录有 ...

  8. 拦截器的使用,配置手机浏览器访问的h5页面

    package com.thinkgem.jeesite.modules.sys.interceptor; import javax.servlet.http.HttpServletRequest; ...

  9. css 实现背景图片不跟着滚动条滚动而滚动

    效果: 只需要在需要背景不跟着动的div里: div{ background:url(); background-attachment:fixed; } 加上background-attachment ...

  10. 当input获取倒焦点的时候,获得输入内容

    描述:当用户点击输入框时,获取到他在input里输入的内容 $().keyup(function(){ $(this).val(); }) $(this).val()==this.value; $(t ...