单细胞数据高级分析之构建成熟路径 | Identifying a maturation trajectory
其实就是另一种形式的打分。
个人点评这种方法:
这篇文章发表在nature上,有点奇怪,个人感觉创新性和重要性还不够格,工具很多,但是本文基本都是自己开发的算法(毕竟satji就是搞统计出身的)。
但是仔细看了代码之后,发现这些方法确实是有点artificial!
而且算法原创性不高,多半是基于现有的一些工具的二次开发。
Identifying a maturation trajectory.
To assign each cell a maturation score that is proportional to the developmental progress, we first performed dimensionality reduction as described above using all genes that were detected in at least 2% of the cells (8,014 genes). This resulted in four significant dimensions. We then fit a principal curve (R package princurve, smoother= ‘lowess’, f= 1/3) through the data. The maturation score of a cell is then the arc-length from the beginning of the curve to the point at which the cell projects onto the curve.
The resulting curve is directionless, so we assign the ‘beginning’ of the curve so that the expression of Nes is negatively correlated with maturation. Nes is a known ventricular zone marker and therefore should only be highly expressed early in the trajectory. Maturation scores are normalized to the interval [0, 1]. In an independent analysis, we also used Monocle2 to order cells along a pseudo-time. We used Monocle version 2.3.6 with expression response variable set to negative binomial. We estimated size factors and dispersion using the default functions.
For ordering cells, we reduced the set of genes based on results of the monocle dispersion Table function, and only considered 718 genes with mean expression≥0.01 and an empirical dispersion at least twice as large as the fitted dispersion. Dimensionality reduction was carried out using the default method (DDRTree)
为了打分,先是降维, 然后拟合了一个principal curve,根据长度来将分数normalize到0~1,其中只利用了一个key gene(Nes),这相当的人为了。
Defining mitotic and post mitotic populations.
We observed a sharp transition point along the maturation trajectory at which cells uniformly transitioned into a postmitotic state, corresponding to the loss of proliferation potential and exit from the cell cycle (Fig. 1f, Extended Data Fig. 1).
We therefore subdivided the maturation trajectory into a mitotic and postmitotic phase to facilitate downstream analyses. We defined cells with a high phase-specific enrichment score (score >2, see section ‘Removal of cell cycle effect’) as being in the S or the G2/M phase.
We then fitted a smooth curve (loess, span=0.33, degree=2) to number of cells in S, G2/M phases as a function of maturation score. The point where this curve falls below half the global average marks the dividing threshold (Fig. 1f).
我对这种方法有着深深的怀疑!
# for maturation trajectory
# fit maturation trajectory
maturation.trajectory <- function(cm, md, expr, pricu.f=1/3) {
cat('Fitting maturation trajectory\n')
genes <- apply(cm[rownames(expr), ] > 0, 1, mean) >= 0.02 & apply(cm[rownames(expr), ] > 0, 1, sum) >= 3
rd <- dim.red(expr[genes, ], max.dim=50, ev.red.th=0.04)
# for a consisten look use Nes expression to orient each axis
for (i in 1:ncol(rd)) {
if (cor(expr['Nes', ], rd[, i]) > 0) {
rd[, i] <- -rd[, i]
}
} md <- md[, !grepl('^DMC', colnames(md))]
md <- cbind(md, rd) pricu <- principal.curve(rd, smoother='lowess', trace=TRUE, f=pricu.f, stretch=333)
# two DMCs
pc.line <- as.data.frame(pricu$s[order(pricu$lambda), ])
# lambda, for each point, its arc-length from the beginning of the curve. The curve is parametrized approximately by arc-length, and hence is unit-speed.
md$maturation.score <- pricu$lambda/max(pricu$lambda) # orient maturation score using Nes expression
if (cor(md$maturation.score, expr['Nes', ]) > 0) {
md$maturation.score <- -(md$maturation.score - max(md$maturation.score))
} # use 1% of neighbor cells to smooth maturation score
md$maturation.score.smooth <- nn.smooth(md$maturation.score, rd[, 1:2], round(ncol(expr)*0.01, 0)) # pick maturation score cutoff to separate mitotic from post-mitotic cells
md$in.cc.phase <- md$cc.phase != 0
fit <- loess(as.numeric(md$in.cc.phase) ~ md$maturation.score.smooth, span=0.5, degree=2)
md$cc.phase.fit <- fit$fitted
# pick MT threshold based on drop in cc.phase cells
# ignore edges of MT because of potential outliers
mt.th <- max(subset(md, cc.phase.fit > mean(md$in.cc.phase)/2 & maturation.score.smooth >= 0.2 & maturation.score.smooth <= 0.8)$maturation.score.smooth) md$postmitotic <- md$maturation.score.smooth > mt.th
return(list(md=md, pricu=pricu, pc.line=pc.line, mt.th=mt.th))
} # for smoothing maturation score
nn.smooth <- function(y, coords, k) {
knn.out <- FNN::get.knn(coords, k)
w <- 1 / (knn.out$nn.dist+.Machine$double.eps)
w <- w / apply(w, 1, sum)
v <- apply(knn.out$nn.index, 2, function(i) y[i])
return(apply(v*w, 1, sum))
}
单细胞数据高级分析之构建成熟路径 | Identifying a maturation trajectory的更多相关文章
- 单细胞数据高级分析之初步降维和聚类 | Dimensionality reduction | Clustering
个人的一些碎碎念: 聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kme ...
- 单细胞数据高级分析之消除细胞周期因素 | Removal of cell cycle effect
The normalization method described above aims to reduce the effect of technical factors in scRNA-seq ...
- PLUTO平台是由美林数据技术股份有限公司下属西安交大美林数据挖掘研究中心自主研发的一款基于云计算技术架构的数据挖掘产品,产品设计严格遵循国际数据挖掘标准CRISP-DM(跨行业数据挖掘过程标准),具备完备的数据准备、模型构建、模型评估、模型管理、海量数据处理和高纬数据可视化分析能力。
http://www.meritdata.com.cn/article/90 PLUTO平台是由美林数据技术股份有限公司下属西安交大美林数据挖掘研究中心自主研发的一款基于云计算技术架构的数据挖掘产品, ...
- 第二篇:智能电网(Smart Grid)中的数据工程与大数据案例分析
前言 上篇文章中讲到,在智能电网的控制与管理侧中,数据的分析和挖掘.可视化等工作属于核心环节.除此之外,二次侧中需要对数据进行采集,数据共享平台的搭建显然也涉及到数据的管理.那么在智能电网领域中,数据 ...
- 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析
在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...
- 个人永久性免费-Excel催化剂功能第93波-地图数据挖宝之两点距离的路径规划
在日常手机端,网页端的向地图发出两点距离的行程规划,相信绝大多数人都有用到过,但毕竟是个体单一行为,若某些时候需要用到批量性的操作,就显得很不现实了,同时,数据只是在应用或网页内,非结构化的数据,也是 ...
- Lakehouse: 统一数据仓库和高级分析的新一代开放平台
1. 摘要 数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性 基于开放的数据格式,如Parquet: 机器学习和数据科学将被作为头等公民支持: 提供卓越 ...
- 机器学习建模高级用法!构建企业级AI建模流水线 ⛵
作者:韩信子@ShowMeAI 机器学习实战系列: http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/articl ...
- 《Wireshark数据包分析实战》 - http背后,tcp/ip抓包分析
作为网络开发人员,使用fiddler无疑是最好的选择,方便易用功能强. 但是什么作为爱学习的同学,是不应该止步于http协议的,学习wireshark则可以满足这方面的需求.wireshark作为抓取 ...
随机推荐
- 20165310 NetSec2019 Week6 Exp4 恶意代码分析
20165310 NetSec2019 Week6 Exp4 恶意代码分析 一.实验要求 1.系统运行监控 使用如计划任务,每隔一分钟记录自己的电脑有哪些程序在联网,连接的外部IP是哪里.运行一段时间 ...
- CS224n学习笔记(一)
How do we have usable meaning in a computer? Represents the words as discrete symbols, (离散型变量) Use t ...
- Codeforces Round 500 (Div 2) Solution
从这里开始 题目地址 瞎扯 Problem A Piles With Stones Problem B And Problem C Photo of The Sky Problem D Chemica ...
- Codeforces Round #425 (Div. 2) Problem D Misha, Grisha and Underground (Codeforces 832D) - 树链剖分 - 树状数组
Misha and Grisha are funny boys, so they like to use new underground. The underground has n stations ...
- 安装旧版本的Firefox
在Ubuntu上安装就版本的Firefox,此处以version 46为例子: 1.删除已存在的Firefox, On CentOS/RHEL # yum remove firefox On Ubun ...
- topcoder srm 455 div1
problem1 link 令$f[x1][y1][x2][y2]$表示矩形(x1,y1)(x2,y2)中能选出的最大值.dp即可. problem2 link 这个题应该有更好的递推公式. 我的做法 ...
- 终于知道linux firefox不能播放 web在线词典的单词发音了! --通过banshee安装gstreamer1-libav/-plugins-ugly/plugins-bad三个mp3插件.
mpg123 是一个 命令行的播放器, 他没有gui界面. 直接用 mpg123 test.mp3 就可以直接播放, 而且, 最终要的是, mpg123 自带了mp3的解码器. mpeg: movin ...
- html页面使用前端框架布局时,弹出子页面等情况若出现布局混乱,可能是回发导致
解决方法:需要带调用 弹框 那里 写一段return false防止回发
- (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks
Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in ...
- Gym 100247C Victor's Research(有多少区间之和为S)
https://vjudge.net/problem/Gym-100247C 题意: 给出一串数,求有多少个区间的和正好等于S. 思路:计算处前缀和,并且用map维护一下每个前缀和出现的次数.这样接下 ...