Problem Description
由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?
答案mod2008.
例如,100100不是本原串,因为他是由两个100组成,而1101是本原串。

Input
输入包括多个数据,每个数据一行,包括一个整数n,代表串的长度。

Output
对于每个测试数据,输出一行,代表有多少个符合要求本原串,答案mod2008.

Sample Input
1
2
3
4

Sample Output
2
2
6
12

长度为n的本源串=2^n-长度为n的非本源串,对于长度为n的非本源串一定是由长度为m的串循环k次得到的,所以m一定是n的约数,(n%m==0)所以只需要求到所有n的约数长度构成的本源串个数即可
公式 F[n]=2^n-ΣF[i]-2; //2包括 全0 和全1 i为n的约数

 # include <iostream>
# include <cstdio>
# include <map>
# define LL long long
using namespace std ; map<int,int> m ; int pow_mod(int p, int k,int mod)
{
int ans = ;
while(k) {
if (k & ) ans = ans * p % mod;
p = (LL)p*p % mod;
k >>= ;
}
return ans;
} int get(int n)
{
if (m[n]!=)
return m[n] ;
m[n] = pow_mod(,n,) - ;
for (int i = ; i*i <= n ; i++)
{
if (n%i == )
{
m[n] = (m[n] - get(i) +)% ;
if (i*i != n)
m[n] = (m[n] - get(n/i)+)% ;
}
}
return m[n] ;
} int main ()
{
int n ;
while (cin>>n)
{
m[] = ;
m[] = ;
m[] = ;
if (n <= )
{
cout<<m[n]<<endl ;
continue ;
}
int ans = get(n) ;
cout<<ans<<endl ; } return ;
}

hdu 2197 求长度为n的本原串 (快速幂+map)的更多相关文章

  1. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  2. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  3. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  4. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  5. HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Me ...

  6. HDU——1005Number Sequence(模版题 二维矩阵快速幂+操作符重载)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. ACM程序设计选修课——1024: 末位零(求末尾0的方法+可有可无的快速幂)

    1024: 末位零 Time Limit: 1 Sec  Memory Limit: 32 MB Submit: 60  Solved: 11 [Submit][Status][Web Board] ...

  8. HDU(1420)Prepared for New Acmer(JAVA语言)【快速幂模板】

    思路:快速幂裸题. //注意用long,否则会超范围 Problem Description 集训进行了将近2个礼拜,这段时间以恢复性训练为主,我一直在密切关注大家的训练情况,目前为止,对大家的表现相 ...

  9. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

随机推荐

  1. 浅析 Bigtable 和 LevelDB 的实现

    在 2006 年的 OSDI 上,Google 发布了名为 Bigtable: A Distributed Storage System for Structured Data 的论文,其中描述了一个 ...

  2. java基础面试题常出现(一)

    1.”==“和equals方法的区别? 1.   ==操作符,对于基本数据类型变量,比较的是两个值是否相等,而对于引用类型,比较的是引用的内存的首地址,即引用同一个对象.1 Obeject的equal ...

  3. 按某个属性排序(字典序,ascII) js/python

    javascrapy方法 var compare = (prop)=>{ return (a,b)=>{ : - } } javascrapy测试代码 var aaa = [ {name: ...

  4. Solr之java操作

    参考教程: http://www.cnblogs.com/xia520pi/p/3625232.html http://www.cnblogs.com/hujunzheng/p/5647896.htm ...

  5. python安装办法

    先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后,选择64位下载. 2.下载完成后如下图所示 ...

  6. js 运动框架及实例

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. B - Frogger 最短路变形('最长路'求'最短路','最短路'求'最长路')

    http://poj.org/problem?id=2253 题目大意: 有一只可怜没人爱的小青蛙,打算去找他的女神青蛙姐姐,但是池塘水路不能走,所以只能通过蹦跶的形式到达目的地,问你从小青蛙到青蛙姐 ...

  8. SQL Server 备份还原

    SQL Server支持三种备份方式 完全备份: 差异备份 事务日志备份 一般备份方式为,完全备份/每周,差异备份/每天,事务日志备份/按分钟计,这样可确保备份的高效性和可恢复性. 1. 完全备份 备 ...

  9. SpringBoot2.X自定义拦截器实战及新旧配置对比(核心知识)

    简介: 讲解拦截器使用,Spingboot2.x新版本配置拦截拦截器和旧版本SpringBoot配置拦截器区别讲解 1.@Configuration 继承WebMvcConfigurationAdap ...

  10. Django开发笔记五

    Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.页面继承 定义base.html: <!DOC ...