HDU 2176 取(m堆)石子游戏 (尼姆博奕)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2176
Input输入有多组.每组第1行是m,m<=200000. 后面m个非零正整数.m=0退出.
Output先取者负输出No.先取者胜输出Yes,然后输出先取者第1次取子的所有方法.如果从有a个石子的堆中取若干个后剩下b个后会胜就输出a b.参看Sample Output.
Sample Input
2
45 45
3
3 6 9
5
5 7 8 9 10
0
Sample Output
No
Yes
9 5
Yes
8 1
9 0
10 3 题解:通常的Nim游戏的定义是这样的:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=;
int a[N];
int main()
{
int m,sum,s,i;
while(cin>>m&&m){
sum=;
for(i=;i<m;i++){
cin>>a[i];
sum^=a[i];
}
if(sum==) cout<<"No"<<endl;
else {
cout<<"Yes"<<endl;
for(i=;i<m;i++){
s=sum^a[i];
if(s<a[i]){
cout<<a[i]<<" "<<s<<endl;
}
}
}
}
return ;
}
HDU 2176 取(m堆)石子游戏 (尼姆博奕)的更多相关文章
- HDU 2176 取(m堆)石子游戏 尼姆博弈
题目思路: 对于尼姆博弈我们知道:op=a[1]^a[2]--a[n],若op==0先手必败 一个简单的数学公式:若op=a^b 那么:op^b=a: 对于第i堆a[i],op^a[i]的值代表其余各 ...
- HDU 2176 取(m堆)石子游戏(Nim)
取(m堆)石子游戏 题意: Problem Description m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子.例如5堆 5,7,8,9,1 ...
- HDU 2176:取(m堆)石子游戏(Nim博弈)
取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- HDU 2176 取(m堆)石子游戏 && HDU1850 Being a Good Boy in Spring Festivaly
HDU2176题意: m堆石子,两人轮流取.只能在1堆中取.取完者胜.先取者负输出No.先取者胜输出Yes,然后输出怎样取子. 通过 SG定理 我们可以知道每一个数的SG值,等于这个数到达不了的前面数 ...
- HDU-2177 取(2堆)石子游戏 (威佐夫博奕)
Problem Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同 ...
- HDU 2176 取(m堆)石子游戏(尼姆博奕)
nim基础博弈 #include<stdio.h> #include<iostream> #include<cstring> #include<queue&g ...
- hdu 2176 取(m堆)石子游戏 (裸Nim)
题意: m堆石头,每堆石头个数:a[1]....a[m]. 每次只能在一堆里取,至少取一个. 最后没石子取者负. 先取者负输出NO,先取胜胜输出YES,然后输出先取者第1次取子的所有方法.如果从有a个 ...
- HDU 2176 取(m堆)石子游戏 —— (Nim博弈)
如果yes的话要输出所有情况,一开始觉得挺难,想了一下也没什么. 每堆的个数^一下,答案不是0就是先取者必胜,那么对必胜态显然至少存在一种可能性使得当前局势变成必败的.只要任意选取一堆,把这堆的数目变 ...
- HDU 2177 取(2堆)石子游戏
取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
随机推荐
- AFNetWorking上传JSON串
AFHTTPSessionManager *manager = [AFHTTPSessionManager manager]; manager.responseSerializer = [AFJSON ...
- dbdeployer安装TokuDB MySQL
下载最新的dbdeployer1.6.0,使用非root账户安装dbdeployer,特别是mv的时候. 1,解压 dbdeployer unpack Percona-Server-5.7.22-22 ...
- mac-破解2018 webstorm
参考链接:https://blog.csdn.net/pariese/article/details/77540069 后续待整理
- React篇-滚动条下移的触发在react的生命周期分析
项目的要求是一个chartUI方式的聊天显示页面,根据聊天信息的不断增加,页面需要滑动一定距离,这样能看到最新的聊天结果,这样就需要在聊天结果返回之后触发滚动条向下滚动到一定的距离,代码如下: com ...
- python认知及六大标准数据类型
--- typora-root-url: assets --- ### -python的认知 ``` 89年开发的语言,创始人范罗苏姆(Guido van Rossum),别称:龟叔(Guido). ...
- [LeetCode] 408. Valid Word Abbreviation_Easy
Given a non-empty string s and an abbreviation abbr, return whether the string matches with the give ...
- [Java in NetBeans] Lesson 16. Exceptions.
这个课程的参考视频和图片来自youtube. 主要学到的知识点有: We want to handle the bad Error. (e.g bad input / bugs in program) ...
- [Java] Create File with java.io.File class
Create a file with some content in some specific location. The reference is here. /** * Write fileCo ...
- 【转】JsonPath教程
https://blog.csdn.net/koflance/article/details/63262484 1. 介绍 类似于XPath在xml文档中的定位,JsonPath表达式通常是用来路径检 ...
- 从零开始一起学习SLAM | 为什么要用齐次坐标?
在涉及到计算机视觉的几何问题中,我们经常看到齐次坐标这个术语.本文介绍一下究竟为什么要用齐次坐标?使用齐次坐标到底有什么好处? 什么是齐次坐标?简单的说:齐次坐标就是在原有坐标上加上一个维度: 使用齐 ...