1. RNN神经网络模型原理
1. RNN神经网络模型原理
2. RNN神经网络模型的不同结构
3. RNN神经网络-LSTM模型结构
1. 前言
循环神经网络(recurrent neural network)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络。
传统的机器学习算法非常依赖于人工提取的特征,使得基于传统机器学习的图像识别、
语音识别以及自然语言处理等问题存在特征提取的瓶颈。而基于全连接神经网络的方法也
存在参数太多、无法利用数据中时间序列信息等问题。随着更加有效的循环神经网络结构被不断提出,循环神经网络挖掘数据中的时序信息以及语义信息的深度表达能力被充分利
用,并在语音识别、语言模型、机器翻译以及时序分析等方面实现了突破。
2. RNN模型结构
循环神经网络的主要用途是处理和预测序列数据。在之前介绍的全连接神经网络或卷积神经网络模型中,网络结构都是从输入层到隐含层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的。考虑这样一个问题,如果要预测句子的下一个单词是什么,一般需要用到当前单词以及前面的单词,因为句子中前后单词并不是独立的。比如,当前单词是“很”,前一个单词是“天空”,那么下一个单词很大概率是“蓝”。循环神经网络的来源就是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面结点的输出。也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出。
RNN结构如下图:
上图中左边是RNN模型没有按时间展开的图,如果按时间序列展开,则是上图中的右边部分。我们重点观察右边部分的图。
这幅图描述了在序列索引号t附近RNN的模型。其中:
- \(x_t\)代表在序列索引号t时训练样本的输入。同样的,\(x_{t-1}\)和\(x_{t+1}\)代表在序列索引号\(t-1\)和\(t+1\)时训练样本的输入。
- \(h_t\)代表在序列索引号t时模型的隐藏状态。\(h_t\)由\(x_t\)和\(h_{t-1}\)共同决定。
- \(o_t\)代表在序列索引号t时模型的输出。\(o_t\)只由模型当前的隐藏状态\(h_t\)决定。
- A代表RNN模型。
3. RNN前向传播算法
最后,给出经典RNN结构的严格数学定义。
输入为\(x_1,x_2,...,x_t\)对应的隐状态为\(h_1,h_2,...,h_t\)
输出为\(y_1,y_2,...,y_t\),如,则经典RNN的运算过程可以表示为
\[
h_t=f(Ux_t+Wh_{t-1}+b)
\]
\[
y_t=softmax(Vh_t+c)
\]
其中,\(U,W,V,b,c\)均为参数,而\(f()\)表示激活函数,一般为tanh函数。
4. 总结
RNN虽然理论上可以很漂亮的解决序列数据的训练,但是它也像DNN一样有梯度消失时的问题,当序列很长的时候问题尤其严重。因此,上面的RNN模型一般不能直接用于应用领域。在语音识别,手写书别以及机器翻译等NLP领域实际应用比较广泛的是基于RNN模型的一个特例LSTM,下一篇我们就来讨论LSTM模型。
1. RNN神经网络模型原理的更多相关文章
- RNN神经网络模型原理
1. 前言 循环神经网络(recurrent neural network)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络. 传统的机器学习算法非常依赖于人工提取的特征, ...
- 2. RNN神经网络模型的不同结构
1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 RNN( Recurrent Neural Network 循环(递归)神经网络) ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- 机器学习入门-BP神经网络模型及梯度下降法-2017年9月5日14:58:16
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- BP神经网络模型及梯度下降法
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- BP神经网络模型与学习算法
一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...
随机推荐
- Linux学习之文件特殊权限详解(SetUID、SetGID、Sticky BIT)(十一)
Linux学习之文件特殊权限详解(SetUID.SetGID.Sticky BIT) 目录 SetUID SetGID Sticky BIT SetUID SetUID简介 只有可以执行的二进制程序和 ...
- Python爬虫之requests+正则表达式抓取猫眼电影top100以及瓜子二手网二手车信息(四)
requests+正则表达式抓取猫眼电影top100 一.首先我们先分析下网页结构 可以看到第一页的URL和第二页的URL的区别在于offset的值,第一页为0,第二页为10,以此类推. 二.< ...
- VS Code编辑器插件整理及配置设定
语言包: Chinese -- VS Code的汉化包 格式化+代码补全: ESLint -- Integrates ESLint Vetur -- A vue tooling Prettier -- ...
- 模拟页面获取的php数据(三)
<?php return array( "aData" => [//通勤方式 "trafficType" => [ 0 => [ &qu ...
- Web大前端面试题-Day7
1. 你能描述一下渐进增强和优雅降级之间的不同吗? 定义: 优雅降级(graceful degradation): 一开始就构建站点的完整功能, 然后针对浏览器测试和修复 渐进增强(progressi ...
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- 用单片机控制LED灯(项目)
#include <reg52.h> #define uchar unsigned char sbit LED_RED = P2^; sbit LED_GREEN = P2^; sbit ...
- BZOJ1166 : [Baltic2008]Magical Stones
考虑二分答案,转化为求有多少$\leq lim$的数满足条件. 从两侧往中间进行数位DP,设$f[l][r][j][x][y][z][pre][suf]$表示当前准备填的两个位置是$l$和$r$,已经 ...
- bzoj 4084 双旋转字符串
给两个集合A,B,找满足要求的(a,b)的对数,可以计算对于a,哪些b成立. 还有就是字符串hash的使用,感觉平时用字符串hash太少了. /**************************** ...
- angular2项目关于主页结构分析
这里需要弄清楚两个问题: 一:主页模块如何加载进来 angular2的根模块应用加载之后便会根据根模块路由信息来加载主页模块 export const appRoutes=[ { path:'', r ...