Spark学习之路 (六)Spark Transformation和Action
Transformation算子
基本的初始化
java
- static SparkConf conf = null;
- static JavaSparkContext sc = null;
- static {
- conf = new SparkConf();
- conf.setMaster("local").setAppName("TestTransformation");
- sc = new JavaSparkContext(conf);
- }
scala
- private val conf: SparkConf = new SparkConf().setAppName("TestTransformation").setMaster("local")
- private val sparkContext = new SparkContext(conf)
一、map、flatMap、mapParations、mapPartitionsWithIndex
1.1 map
(1) 使用Java7进行编写
map十分容易理解,他是将源JavaRDD的一个一个元素的传入call方法,并经过算法后一个一个的返回从而生成一个新的JavaRDD。
- public static void map(){
- //String[] names = {"张无忌","赵敏","周芷若"};
- List<String> list = Arrays.asList("张无忌","赵敏","周芷若");
- System.out.println(list.size());
- JavaRDD<String> listRDD = sc.parallelize(list);
- JavaRDD<String> nameRDD = listRDD.map(new Function<String, String>() {
- @Override
- public String call(String name) throws Exception {
- return "Hello " + name;
- }
- });
- nameRDD.foreach(new VoidFunction<String>() {
- @Override
- public void call(String s) throws Exception {
- System.out.println(s);
- }
- });
- }
(2) 使用Java8编写
- public static void map(){
- String[] names = {"张无忌","赵敏","周芷若"};
- List<String> list = Arrays.asList(names);
- JavaRDD<String> listRDD = sc.parallelize(list);
- JavaRDD<String> nameRDD = listRDD.map(name -> {
- return "Hello " + name;
- });
- nameRDD.foreach(name -> System.out.println(name));
- }
(3) 使用scala进行编写
- def map(): Unit ={
- val list = List("张无忌", "赵敏", "周芷若")
- val listRDD = sc.parallelize(list)
- val nameRDD = listRDD.map(name => "Hello " + name)
- nameRDD.foreach(name => println(name))
- }
(4) 运行结果
(5) 总结
可以看出,对于map算子,源JavaRDD的每个元素都会进行计算,由于是依次进行传参,所以他是有序的,新RDD的元素顺序与源RDD是相同的。而由有序又引出接下来的flatMap。
1.2 flatMap
(1) 使用Java7进行编写
flatMap与map一样,是将RDD中的元素依次的传入call方法,他比map多的功能是能在任何一个传入call方法的元素后面添加任意多元素,而能达到这一点,正是因为其进行传参是依次进行的。
- public static void flatMap(){
- List<String> list = Arrays.asList("张无忌 赵敏","宋青书 周芷若");
- JavaRDD<String> listRDD = sc.parallelize(list);
- JavaRDD<String> nameRDD = listRDD
- .flatMap(new FlatMapFunction<String, String>() {
- @Override
- public Iterator<String> call(String line) throws Exception {
- return Arrays.asList(line.split(" ")).iterator();
- }
- })
- .map(new Function<String, String>() {
- @Override
- public String call(String name) throws Exception {
- return "Hello " + name;
- }
- });
- nameRDD.foreach(new VoidFunction<String>() {
- @Override
- public void call(String s) throws Exception {
- System.out.println(s);
- }
- });
- }
(2) 使用Java8进行编写
- public static void flatMap(){
- List<String> list = Arrays.asList("张无忌 赵敏","宋青书 周芷若");
- JavaRDD<String> listRDD = sc.parallelize(list);
- JavaRDD<String> nameRDD = listRDD.flatMap(line -> Arrays.asList(line.split(" ")).iterator())
- .map(name -> "Hello " + name);
- nameRDD.foreach(name -> System.out.println(name));
- }
(3) 使用scala进行编写
- def flatMap(): Unit ={
- val list = List("张无忌 赵敏","宋青书 周芷若")
- val listRDD = sc.parallelize(list)
- val nameRDD = listRDD.flatMap(line => line.split(" ")).map(name => "Hello " + name)
- nameRDD.foreach(name => println(name))
- }
(4) 运行结果
(5) 总结
flatMap的特性决定了这个算子在对需要随时增加元素的时候十分好用,比如在对源RDD查漏补缺时。
map和flatMap都是依次进行参数传递的,但有时候需要RDD中的两个元素进行相应操作时(例如:算存款所得时,下一个月所得的利息是要原本金加上上一个月所得的本金的),这两个算子便无法达到目的了,这是便需要mapPartitions算子,他传参的方式是将整个RDD传入,然后将一个迭代器传出生成一个新的RDD,由于整个RDD都传入了,所以便能完成前面说的业务。
1.3 mapPartitions
(1) 使用Java7进行编写
- /**
- * map:
- * 一条数据一条数据的处理(文件系统,数据库等等)
- * mapPartitions:
- * 一次获取的是一个分区的数据(hdfs)
- * 正常情况下,mapPartitions 是一个高性能的算子
- * 因为每次处理的是一个分区的数据,减少了去获取数据的次数。
- *
- * 但是如果我们的分区如果设置得不合理,有可能导致每个分区里面的数据量过大。
- */
- public static void mapPartitions(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
- //参数二代表这个rdd里面有两个分区
- JavaRDD<Integer> listRDD = sc.parallelize(list,2);
- listRDD.mapPartitions(new FlatMapFunction<Iterator<Integer>, String>() {
- @Override
- public Iterator<String> call(Iterator<Integer> iterator) throws Exception {
- ArrayList<String> array = new ArrayList<>();
- while (iterator.hasNext()){
- array.add("hello " + iterator.next());
- }
- return array.iterator();
- }
- }).foreach(new VoidFunction<String>() {
- @Override
- public void call(String s) throws Exception {
- System.out.println(s);
- }
- });
- }
(2) 使用Java8进行编写
- public static void mapParations(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 2);
- listRDD.mapPartitions(iterator -> {
- ArrayList<String> array = new ArrayList<>();
- while (iterator.hasNext()){
- array.add("hello " + iterator.next());
- }
- return array.iterator();
- }).foreach(name -> System.out.println(name));
- }
(3) 使用scala进行编写
- def mapParations(): Unit ={
- val list = List(1,2,3,4,5,6)
- val listRDD = sc.parallelize(list,2)
- listRDD.mapPartitions(iterator => {
- val newList: ListBuffer[String] = ListBuffer()
- while (iterator.hasNext){
- newList.append("hello " + iterator.next())
- }
- newList.toIterator
- }).foreach(name => println(name))
- }
(4) 运行结果
1.4 mapPartitionsWithIndex
每次获取和处理的就是一个分区的数据,并且知道处理的分区的分区号是啥?
(1)使用Java7编写
- public static void mapPartitionsWithIndex(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 2);
- listRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<Integer>, Iterator<String>>() {
- @Override
- public Iterator<String> call(Integer index, Iterator<Integer> iterator) throws Exception {
- ArrayList<String> list1 = new ArrayList<>();
- while (iterator.hasNext()){
- list1.add(index+"_"+iterator.next());
- }
- return list1.iterator();
- }
- },true)
- .foreach(new VoidFunction<String>() {
- @Override
- public void call(String s) throws Exception {
- System.out.println(s);
- }
- });
- }
(2)使用Java8编写
- public static void mapPartitionsWithIndex() {
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 2);
- listRDD.mapPartitionsWithIndex((index,iterator) -> {
- ArrayList<String> list1 = new ArrayList<>();
- while (iterator.hasNext()){
- list1.add(index+"_"+iterator.next());
- }
- return list1.iterator();
- },true)
- .foreach(str -> System.out.println(str));
- }
(3)使用scala编写
- def mapPartitionsWithIndex(): Unit ={
- val list = List(1,2,3,4,5,6,7,8)
- sc.parallelize(list).mapPartitionsWithIndex((index,iterator) => {
- val listBuffer:ListBuffer[String] = new ListBuffer
- while (iterator.hasNext){
- listBuffer.append(index+"_"+iterator.next())
- }
- listBuffer.iterator
- },true)
- .foreach(println(_))
- }
(4)运行结果
二、reduce、reduceByKey
2.1 reduce
reduce其实是讲RDD中的所有元素进行合并,当运行call方法时,会传入两个参数,在call方法中将两个参数合并后返回,而这个返回值回合一个新的RDD中的元素再次传入call方法中,继续合并,直到合并到只剩下一个元素时。
(1)使用Java7编写
- public static void reduce(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- Integer result = listRDD.reduce(new Function2<Integer, Integer, Integer>() {
- @Override
- public Integer call(Integer i1, Integer i2) throws Exception {
- return i1 + i2;
- }
- });
- System.out.println(result);
- }
(2)使用Java8编写
- public static void reduce(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- Integer result = listRDD.reduce((x, y) -> x + y);
- System.out.println(result);
- }
(3)使用scala编写
- def reduce(): Unit ={
- val list = List(1,2,3,4,5,6)
- val listRDD = sc.parallelize(list)
- val result = listRDD.reduce((x,y) => x+y)
- println(result)
- }
(4)运行结果
2.2 reduceByKey
reduceByKey仅将RDD中所有K,V对中K值相同的V进行合并。
(1)使用Java7编写
- public static void reduceByKey(){
- List<Tuple2<String, Integer>> list = Arrays.asList(
- new Tuple2<String, Integer>("武当", 99),
- new Tuple2<String, Integer>("少林", 97),
- new Tuple2<String, Integer>("武当", 89),
- new Tuple2<String, Integer>("少林", 77)
- );
- JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
- //运行reduceByKey时,会将key值相同的组合在一起做call方法中的操作
- JavaPairRDD<String, Integer> result = listRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
- @Override
- public Integer call(Integer i1, Integer i2) throws Exception {
- return i1 + i2;
- }
- });
- result.foreach(new VoidFunction<Tuple2<String, Integer>>() {
- @Override
- public void call(Tuple2<String, Integer> tuple) throws Exception {
- System.out.println("门派: " + tuple._1 + "->" + tuple._2);
- }
- });
- }
(2)使用Java8编写
- public static void reduceByKey(){
- List<Tuple2<String, Integer>> list = Arrays.asList(
- new Tuple2<String, Integer>("武当", 99),
- new Tuple2<String, Integer>("少林", 97),
- new Tuple2<String, Integer>("武当", 89),
- new Tuple2<String, Integer>("少林", 77)
- );
- JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
- JavaPairRDD<String, Integer> resultRDD = listRDD.reduceByKey((x, y) -> x + y);
- resultRDD.foreach(tuple -> System.out.println("门派: " + tuple._1 + "->" + tuple._2));
- }
(3)使用scala编写
- def reduceByKey(): Unit ={
- val list = List(("武当", 99), ("少林", 97), ("武当", 89), ("少林", 77))
- val mapRDD = sc.parallelize(list)
- val resultRDD = mapRDD.reduceByKey(_+_)
- resultRDD.foreach(tuple => println("门派: " + tuple._1 + "->" + tuple._2))
- }
(4)运行结果
三、union,join和groupByKey
3.1 union
当要将两个RDD合并时,便要用到union和join,其中union只是简单的将两个RDD累加起来,可以看做List的addAll方法。就想List中一样,当使用union及join时,必须保证两个RDD的泛型是一致的。
(1)使用Java7编写
- public static void union(){
- final List<Integer> list1 = Arrays.asList(1, 2, 3, 4);
- final List<Integer> list2 = Arrays.asList(3, 4, 5, 6);
- final JavaRDD<Integer> rdd1 = sc.parallelize(list1);
- final JavaRDD<Integer> rdd2 = sc.parallelize(list2);
- rdd1.union(rdd2)
- .foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer number) throws Exception {
- System.out.println(number + "");
- }
- });
- }
(2)使用Java8编写
- public static void union(){
- final List<Integer> list1 = Arrays.asList(1, 2, 3, 4);
- final List<Integer> list2 = Arrays.asList(3, 4, 5, 6);
- final JavaRDD<Integer> rdd1 = sc.parallelize(list1);
- final JavaRDD<Integer> rdd2 = sc.parallelize(list2);
- rdd1.union(rdd2).foreach(num -> System.out.println(num));
- }
(3)使用scala编写
- def union(): Unit ={
- val list1 = List(1,2,3,4)
- val list2 = List(3,4,5,6)
- val rdd1 = sc.parallelize(list1)
- val rdd2 = sc.parallelize(list2)
- rdd1.union(rdd2).foreach(println(_))
- }
(4)运行结果
3.2 groupByKey
(1)使用Java7编写
union只是将两个RDD简单的累加在一起,而join则不一样,join类似于hadoop中的combin操作,只是少了排序这一段,再说join之前说说groupByKey,因为join可以理解为union与groupByKey的结合:groupBy是将RDD中的元素进行分组,组名是call方法中的返回值,而顾名思义groupByKey是将PairRDD中拥有相同key值得元素归为一组。即:
- public static void groupByKey(){
- List<Tuple2<String,String>> list = Arrays.asList(
- new Tuple2("武当", "张三丰"),
- new Tuple2("峨眉", "灭绝师太"),
- new Tuple2("武当", "宋青书"),
- new Tuple2("峨眉", "周芷若")
- );
- JavaPairRDD<String, String> listRDD = sc.parallelizePairs(list);
- JavaPairRDD<String, Iterable<String>> groupByKeyRDD = listRDD.groupByKey();
- groupByKeyRDD.foreach(new VoidFunction<Tuple2<String, Iterable<String>>>() {
- @Override
- public void call(Tuple2<String, Iterable<String>> tuple) throws Exception {
- String menpai = tuple._1;
- Iterator<String> iterator = tuple._2.iterator();
- String people = "";
- while (iterator.hasNext()){
- people = people + iterator.next()+" ";
- }
- System.out.println("门派:"+menpai + "人员:"+people);
- }
- });
- }
(2)使用Java8编写
- public static void groupByKey(){
- List<Tuple2<String,String>> list = Arrays.asList(
- new Tuple2("武当", "张三丰"),
- new Tuple2("峨眉", "灭绝师太"),
- new Tuple2("武当", "宋青书"),
- new Tuple2("峨眉", "周芷若")
- );
- JavaPairRDD<String, String> listRDD = sc.parallelizePairs(list);
- JavaPairRDD<String, Iterable<String>> groupByKeyRDD = listRDD.groupByKey();
- groupByKeyRDD.foreach(tuple -> {
- String menpai = tuple._1;
- Iterator<String> iterator = tuple._2.iterator();
- String people = "";
- while (iterator.hasNext()){
- people = people + iterator.next()+" ";
- }
- System.out.println("门派:"+menpai + "人员:"+people);
- });
- }
(3)使用scala编写
- def groupByKey(): Unit ={
- val list = List(("武当", "张三丰"), ("峨眉", "灭绝师太"), ("武当", "宋青书"), ("峨眉", "周芷若"))
- val listRDD = sc.parallelize(list)
- val groupByKeyRDD = listRDD.groupByKey()
- groupByKeyRDD.foreach(t => {
- val menpai = t._1
- val iterator = t._2.iterator
- var people = ""
- while (iterator.hasNext) people = people + iterator.next + " "
- println("门派:" + menpai + "人员:" + people)
- })
- }
(4)运行结果
3.3 join
(1)使用Java7编写
join是将两个PairRDD合并,并将有相同key的元素分为一组,可以理解为groupByKey和Union的结合
- public static void join(){
- final List<Tuple2<Integer, String>> names = Arrays.asList(
- new Tuple2<Integer, String>(1, "东方不败"),
- new Tuple2<Integer, String>(2, "令狐冲"),
- new Tuple2<Integer, String>(3, "林平之")
- );
- final List<Tuple2<Integer, Integer>> scores = Arrays.asList(
- new Tuple2<Integer, Integer>(1, 99),
- new Tuple2<Integer, Integer>(2, 98),
- new Tuple2<Integer, Integer>(3, 97)
- );
- final JavaPairRDD<Integer, String> nemesrdd = sc.parallelizePairs(names);
- final JavaPairRDD<Integer, Integer> scoresrdd = sc.parallelizePairs(scores);
- /**
- * <Integer, 学号
- * Tuple2<String, 名字
- * Integer>> 分数
- */
- final JavaPairRDD<Integer, Tuple2<String, Integer>> joinRDD = nemesrdd.join(scoresrdd);
- // final JavaPairRDD<Integer, Tuple2<Integer, String>> join = scoresrdd.join(nemesrdd);
- joinRDD.foreach(new VoidFunction<Tuple2<Integer, Tuple2<String, Integer>>>() {
- @Override
- public void call(Tuple2<Integer, Tuple2<String, Integer>> tuple) throws Exception {
- System.out.println("学号:" + tuple._1 + " 名字:"+tuple._2._1 + " 分数:"+tuple._2._2);
- }
- });
- }
(2)使用Java8编写
- public static void join(){
- final List<Tuple2<Integer, String>> names = Arrays.asList(
- new Tuple2<Integer, String>(1, "东方不败"),
- new Tuple2<Integer, String>(2, "令狐冲"),
- new Tuple2<Integer, String>(3, "林平之")
- );
- final List<Tuple2<Integer, Integer>> scores = Arrays.asList(
- new Tuple2<Integer, Integer>(1, 99),
- new Tuple2<Integer, Integer>(2, 98),
- new Tuple2<Integer, Integer>(3, 97)
- );
- final JavaPairRDD<Integer, String> nemesrdd = sc.parallelizePairs(names);
- final JavaPairRDD<Integer, Integer> scoresrdd = sc.parallelizePairs(scores);
- final JavaPairRDD<Integer, Tuple2<String, Integer>> joinRDD = nemesrdd.join(scoresrdd);
- joinRDD.foreach(tuple -> System.out.println("学号:"+tuple._1+" 姓名:"+tuple._2._1+" 成绩:"+tuple._2._2));
- }
(3)使用scala编写
- def join(): Unit = {
- val list1 = List((1, "东方不败"), (2, "令狐冲"), (3, "林平之"))
- val list2 = List((1, 99), (2, 98), (3, 97))
- val list1RDD = sc.parallelize(list1)
- val list2RDD = sc.parallelize(list2)
- val joinRDD = list1RDD.join(list2RDD)
- joinRDD.foreach(t => println("学号:" + t._1 + " 姓名:" + t._2._1 + " 成绩:" + t._2._2))
- }
(4)运行结果
四、sample、cartesian
4.1 sample
(1)使用Java7编写
- public static void sample(){
- ArrayList<Integer> list = new ArrayList<>();
- for(int i=1;i<=100;i++){
- list.add(i);
- }
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- /**
- * sample用来从RDD中抽取样本。他有三个参数
- * withReplacement: Boolean,
- * true: 有放回的抽样
- * false: 无放回抽象
- * fraction: Double:
- * 抽取样本的比例
- * seed: Long:
- * 随机种子
- */
- JavaRDD<Integer> sampleRDD = listRDD.sample(false, 0.1,0);
- sampleRDD.foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.print(num+" ");
- }
- });
- }
(2)使用Java8编写
- public static void sample(){
- ArrayList<Integer> list = new ArrayList<>();
- for(int i=1;i<=100;i++){
- list.add(i);
- }
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- JavaRDD<Integer> sampleRDD = listRDD.sample(false, 0.1, 0);
- sampleRDD.foreach(num -> System.out.print(num + " "));
- }
(3)使用scala编写
- def sample(): Unit ={
- val list = 1 to 100
- val listRDD = sc.parallelize(list)
- listRDD.sample(false,0.1,0).foreach(num => print(num + " "))
- }
(4)运行结果
4.2 cartesian
cartesian是用于求笛卡尔积的
(1)使用Java7编写
- public static void cartesian(){
- List<String> list1 = Arrays.asList("A", "B");
- List<Integer> list2 = Arrays.asList(1, 2, 3);
- JavaRDD<String> list1RDD = sc.parallelize(list1);
- JavaRDD<Integer> list2RDD = sc.parallelize(list2);
- list1RDD.cartesian(list2RDD).foreach(new VoidFunction<Tuple2<String, Integer>>() {
- @Override
- public void call(Tuple2<String, Integer> tuple) throws Exception {
- System.out.println(tuple._1 + "->" + tuple._2);
- }
- });
- }
(2)使用Java8编写
- public static void cartesian(){
- List<String> list1 = Arrays.asList("A", "B");
- List<Integer> list2 = Arrays.asList(1, 2, 3);
- JavaRDD<String> list1RDD = sc.parallelize(list1);
- JavaRDD<Integer> list2RDD = sc.parallelize(list2);
- list1RDD.cartesian(list2RDD).foreach(tuple -> System.out.print(tuple._1 + "->" + tuple._2));
- }
(3)使用scala编写
- def cartesian(): Unit ={
- val list1 = List("A","B")
- val list2 = List(1,2,3)
- val list1RDD = sc.parallelize(list1)
- val list2RDD = sc.parallelize(list2)
- list1RDD.cartesian(list2RDD).foreach(t => println(t._1 +"->"+t._2))
- }
(4)运行结果
五、filter、distinct、intersection
5.1 filter
(1)使用Java7编写
过滤出偶数
- public static void filter(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- JavaRDD<Integer> filterRDD = listRDD.filter(new Function<Integer, Boolean>() {
- @Override
- public Boolean call(Integer num) throws Exception {
- return num % 2 == 0;
- }
- });
- filterRDD.foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.print(num + " ");
- }
- });
- }
(2)使用Java8编写
- public static void filter(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
- JavaRDD<Integer> listRDD = sc.parallelize(list);
- JavaRDD<Integer> filterRDD = listRDD.filter(num -> num % 2 ==0);
- filterRDD.foreach(num -> System.out.print(num + " "));
- }
(3)使用scala编写
- def filter(): Unit ={
- val list = List(1,2,3,4,5,6,7,8,9,10)
- val listRDD = sc.parallelize(list)
- listRDD.filter(num => num % 2 ==0).foreach(print(_))
- }
(4)运行结果
5.2 distinct
(1)使用Java7编写
- public static void distinct(){
- List<Integer> list = Arrays.asList(1, 1, 2, 2, 3, 3, 4, 5);
- JavaRDD<Integer> listRDD = (JavaRDD<Integer>) sc.parallelize(list);
- JavaRDD<Integer> distinctRDD = listRDD.distinct();
- distinctRDD.foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.println(num);
- }
- });
- }
(2)使用Java8编写
- public static void distinct(){
- List<Integer> list = Arrays.asList(1, 1, 2, 2, 3, 3, 4, 5);
- JavaRDD<Integer> listRDD = (JavaRDD<Integer>) sc.parallelize(list);
- listRDD.distinct().foreach(num -> System.out.println(num));
- }
(3)使用scala编写
- def distinct(): Unit ={
- val list = List(1,1,2,2,3,3,4,5)
- sc.parallelize(list).distinct().foreach(println(_))
- }
(4)运行结果
5.3 intersection
(1)使用Java7编写
- public static void intersection(){
- List<Integer> list1 = Arrays.asList(1, 2, 3, 4);
- List<Integer> list2 = Arrays.asList(3, 4, 5, 6);
- JavaRDD<Integer> list1RDD = sc.parallelize(list1);
- JavaRDD<Integer> list2RDD = sc.parallelize(list2);
- list1RDD.intersection(list2RDD).foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.println(num);
- }
- });
- }
(2)使用Java8编写
- public static void intersection() {
- List<Integer> list1 = Arrays.asList(, , , );
- List<Integer> list2 = Arrays.asList(, , , );
- JavaRDD<Integer> list1RDD = sc.parallelize(list1);
- JavaRDD<Integer> list2RDD = sc.parallelize(list2);
- list1RDD.intersection(list2RDD).foreach(num ->System.out.println(num));
- }
(3)使用scala编写
- def intersection(): Unit ={
- val list1 = List(1,2,3,4)
- val list2 = List(3,4,5,6)
- val list1RDD = sc.parallelize(list1)
- val list2RDD = sc.parallelize(list2)
- list1RDD.intersection(list2RDD).foreach(println(_))
- }
(4)运行结果
六、coalesce、repartition、repartitionAndSortWithinPartitions
6.1 coalesce
分区数由多 -》 变少
(1)使用Java7编写
- public static void coalesce(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 3);
- listRDD.coalesce(1).foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.print(num);
- }
- });
- }
(2)使用Java8编写
- public static void coalesce() {
- List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 3);
- listRDD.coalesce(1).foreach(num -> System.out.println(num));
- }
(3)使用scala编写
- def coalesce(): Unit = {
- val list = List(1,2,3,4,5,6,7,8,9)
- sc.parallelize(list,3).coalesce(1).foreach(println(_))
- }
(4)运行结果
6.2 replication
进行重分区,解决的问题:本来分区数少 -》 增加分区数
(1)使用Java7编写
- public static void replication(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 1);
- listRDD.repartition(2).foreach(new VoidFunction<Integer>() {
- @Override
- public void call(Integer num) throws Exception {
- System.out.println(num);
- }
- });
- }
(2)使用Java8编写
- public static void replication(){
- List<Integer> list = Arrays.asList(1, 2, 3, 4);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 1);
- listRDD.repartition(2).foreach(num -> System.out.println(num));
- }
(3)使用scala编写
- def replication(): Unit ={
- val list = List(1,2,3,4)
- val listRDD = sc.parallelize(list,1)
- listRDD.repartition(2).foreach(println(_))
- }
(4)运行结果
6.3 repartitionAndSortWithinPartitions
repartitionAndSortWithinPartitions函数是repartition函数的变种,与repartition函数不同的是,repartitionAndSortWithinPartitions在给定的partitioner内部进行排序,性能比repartition要高。
(1)使用Java7编写
- public static void repartitionAndSortWithinPartitions(){
- List<Integer> list = Arrays.asList(1, 3, 55, 77, 33, 5, 23);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 1);
- JavaPairRDD<Integer, Integer> pairRDD = listRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {
- @Override
- public Tuple2<Integer, Integer> call(Integer num) throws Exception {
- return new Tuple2<>(num, num);
- }
- });
- JavaPairRDD<Integer, Integer> parationRDD = pairRDD.repartitionAndSortWithinPartitions(new Partitioner() {
- @Override
- public int getPartition(Object key) {
- Integer index = Integer.valueOf(key.toString());
- if (index % 2 == 0) {
- return 0;
- } else {
- return 1;
- }
- }
- @Override
- public int numPartitions() {
- return 2;
- }
- });
- parationRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<Tuple2<Integer, Integer>>, Iterator<String>>() {
- @Override
- public Iterator<String> call(Integer index, Iterator<Tuple2<Integer, Integer>> iterator) throws Exception {
- final ArrayList<String> list1 = new ArrayList<>();
- while (iterator.hasNext()){
- list1.add(index+"_"+iterator.next());
- }
- return list1.iterator();
- }
- },false).foreach(new VoidFunction<String>() {
- @Override
- public void call(String s) throws Exception {
- System.out.println(s);
- }
- });
- }
(2)使用Java8编写
- public static void repartitionAndSortWithinPartitions(){
- List<Integer> list = Arrays.asList(1, 4, 55, 66, 33, 48, 23);
- JavaRDD<Integer> listRDD = sc.parallelize(list, 1);
- JavaPairRDD<Integer, Integer> pairRDD = listRDD.mapToPair(num -> new Tuple2<>(num, num));
- pairRDD.repartitionAndSortWithinPartitions(new HashPartitioner(2))
- .mapPartitionsWithIndex((index,iterator) -> {
- ArrayList<String> list1 = new ArrayList<>();
- while (iterator.hasNext()){
- list1.add(index+"_"+iterator.next());
- }
- return list1.iterator();
- },false)
- .foreach(str -> System.out.println(str));
- }
(3)使用scala编写
- def repartitionAndSortWithinPartitions(): Unit ={
- val list = List(1, 4, 55, 66, 33, 48, 23)
- val listRDD = sc.parallelize(list,1)
- listRDD.map(num => (num,num))
- .repartitionAndSortWithinPartitions(new HashPartitioner(2))
- .mapPartitionsWithIndex((index,iterator) => {
- val listBuffer: ListBuffer[String] = new ListBuffer
- while (iterator.hasNext) {
- listBuffer.append(index + "_" + iterator.next())
- }
- listBuffer.iterator
- },false)
- .foreach(println(_))
- }
(4)运行结果
七、cogroup、sortBykey、aggregateByKey
7.1 cogroup
对两个RDD中的KV元素,每个RDD中相同key中的元素分别聚合成一个集合。与reduceByKey不同的是针对两个RDD中相同的key的元素进行合并。
(1)使用Java7编写
- public static void cogroup(){
- List<Tuple2<Integer, String>> list1 = Arrays.asList(
- new Tuple2<Integer, String>(1, "www"),
- new Tuple2<Integer, String>(2, "bbs")
- );
- List<Tuple2<Integer, String>> list2 = Arrays.asList(
- new Tuple2<Integer, String>(1, "cnblog"),
- new Tuple2<Integer, String>(2, "cnblog"),
- new Tuple2<Integer, String>(3, "very")
- );
- List<Tuple2<Integer, String>> list3 = Arrays.asList(
- new Tuple2<Integer, String>(1, "com"),
- new Tuple2<Integer, String>(2, "com"),
- new Tuple2<Integer, String>(3, "good")
- );
- JavaPairRDD<Integer, String> list1RDD = sc.parallelizePairs(list1);
- JavaPairRDD<Integer, String> list2RDD = sc.parallelizePairs(list2);
- JavaPairRDD<Integer, String> list3RDD = sc.parallelizePairs(list3);
- list1RDD.cogroup(list2RDD,list3RDD).foreach(new VoidFunction<Tuple2<Integer, Tuple3<Iterable<String>, Iterable<String>, Iterable<String>>>>() {
- @Override
- public void call(Tuple2<Integer, Tuple3<Iterable<String>, Iterable<String>, Iterable<String>>> tuple) throws Exception {
- System.out.println(tuple._1+" " +tuple._2._1() +" "+tuple._2._2()+" "+tuple._2._3());
- }
- });
- }
(2)使用Java8编写
- public static void cogroup(){
- List<Tuple2<Integer, String>> list1 = Arrays.asList(
- new Tuple2<Integer, String>(1, "www"),
- new Tuple2<Integer, String>(2, "bbs")
- );
- List<Tuple2<Integer, String>> list2 = Arrays.asList(
- new Tuple2<Integer, String>(1, "cnblog"),
- new Tuple2<Integer, String>(2, "cnblog"),
- new Tuple2<Integer, String>(3, "very")
- );
- List<Tuple2<Integer, String>> list3 = Arrays.asList(
- new Tuple2<Integer, String>(1, "com"),
- new Tuple2<Integer, String>(2, "com"),
- new Tuple2<Integer, String>(3, "good")
- );
- JavaPairRDD<Integer, String> list1RDD = sc.parallelizePairs(list1);
- JavaPairRDD<Integer, String> list2RDD = sc.parallelizePairs(list2);
- JavaPairRDD<Integer, String> list3RDD = sc.parallelizePairs(list3);
- list1RDD.cogroup(list2RDD,list3RDD).foreach(tuple ->
- System.out.println(tuple._1+" " +tuple._2._1() +" "+tuple._2._2()+" "+tuple._2._3()));
- }
(3)使用scala编写
- def cogroup(): Unit ={
- val list1 = List((1, "www"), (2, "bbs"))
- val list2 = List((1, "cnblog"), (2, "cnblog"), (3, "very"))
- val list3 = List((1, "com"), (2, "com"), (3, "good"))
- val list1RDD = sc.parallelize(list1)
- val list2RDD = sc.parallelize(list2)
- val list3RDD = sc.parallelize(list3)
- list1RDD.cogroup(list2RDD,list3RDD).foreach(tuple =>
- println(tuple._1 + " " + tuple._2._1 + " " + tuple._2._2 + " " + tuple._2._3))
- }
(4)运行结果
7.2 sortBykey
sortByKey函数作用于Key-Value形式的RDD,并对Key进行排序。它是在org.apache.spark.rdd.OrderedRDDFunctions
中实现的,实现如下
- def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.size)
- : RDD[(K, V)] =
- {
- val part = new RangePartitioner(numPartitions, self, ascending)
- new ShuffledRDD[K, V, V](self, part)
- .setKeyOrdering(if (ascending) ordering else ordering.reverse)
- }
从函数的实现可以看出,它主要接受两个函数,含义和sortBy一样,这里就不进行解释了。该函数返回的RDD一定是ShuffledRDD类型的,因为对源RDD进行排序,必须进行Shuffle操作,而Shuffle操作的结果RDD就是ShuffledRDD。其实这个函数的实现很优雅,里面用到了RangePartitioner,它可以使得相应的范围Key数据分到同一个partition中,然后内部用到了mapPartitions对每个partition中的数据进行排序,而每个partition中数据的排序用到了标准的sort机制,避免了大量数据的shuffle。下面对sortByKey的使用进行说明:
(1)使用Java7编写
- public static void sortByKey(){
- List<Tuple2<Integer, String>> list = Arrays.asList(
- new Tuple2<>(99, "张三丰"),
- new Tuple2<>(96, "东方不败"),
- new Tuple2<>(66, "林平之"),
- new Tuple2<>(98, "聂风")
- );
- JavaPairRDD<Integer, String> listRDD = sc.parallelizePairs(list);
- listRDD.sortByKey(false).foreach(new VoidFunction<Tuple2<Integer, String>>() {
- @Override
- public void call(Tuple2<Integer, String> tuple) throws Exception {
- System.out.println(tuple._2+"->"+tuple._1);
- }
- });
- }
(2)使用Java8编写
- public static void sortByKey(){
- List<Tuple2<Integer, String>> list = Arrays.asList(
- new Tuple2<>(99, "张三丰"),
- new Tuple2<>(96, "东方不败"),
- new Tuple2<>(66, "林平之"),
- new Tuple2<>(98, "聂风")
- );
- JavaPairRDD<Integer, String> listRDD = sc.parallelizePairs(list);
- listRDD.sortByKey(false).foreach(tuple ->System.out.println(tuple._2+"->"+tuple._1));
- }
(3)使用scala编写
- def sortByKey(): Unit ={
- val list = List((99, "张三丰"), (96, "东方不败"), (66, "林平之"), (98, "聂风"))
- sc.parallelize(list).sortByKey(false).foreach(tuple => println(tuple._2 + "->" + tuple._1))
- }
(4)运行结果
7.3 aggregateByKey
aggregateByKey函数对PairRDD中相同Key的值进行聚合操作,在聚合过程中同样使用了一个中立的初始值。和aggregate函数类似,aggregateByKey返回值的类型不需要和RDD中value的类型一致。因为aggregateByKey是对相同Key中的值进行聚合操作,所以aggregateByKey函数最终返回的类型还是Pair RDD,对应的结果是Key和聚合好的值;而aggregate函数直接是返回非RDD的结果,这点需要注意。在实现过程中,定义了三个aggregateByKey函数原型,但最终调用的aggregateByKey函数都一致。
(1)使用Java7编写
- public static void aggregateByKey(){
- List<String> list = Arrays.asList("you,jump", "i,jump");
- JavaRDD<String> listRDD = sc.parallelize(list);
- listRDD.flatMap(new FlatMapFunction<String, String>() {
- @Override
- public Iterator<String> call(String line) throws Exception {
- return Arrays.asList(line.split(",")).iterator();
- }
- }).mapToPair(new PairFunction<String, String, Integer>() {
- @Override
- public Tuple2<String, Integer> call(String word) throws Exception {
- return new Tuple2<>(word,1);
- }
- }).aggregateByKey(0, new Function2<Integer, Integer, Integer>() {
- @Override
- public Integer call(Integer i1, Integer i2) throws Exception {
- return i1 + i2;
- }
- }, new Function2<Integer, Integer, Integer>() {
- @Override
- public Integer call(Integer i1, Integer i2) throws Exception {
- return i1+i2;
- }
- }).foreach(new VoidFunction<Tuple2<String, Integer>>() {
- @Override
- public void call(Tuple2<String, Integer> tuple) throws Exception {
- System.out.println(tuple._1+"->"+tuple._2);
- }
- });
- }
(2)使用Java8编写
- public static void aggregateByKey() {
- List<String> list = Arrays.asList("you,jump", "i,jump");
- JavaRDD<String> listRDD = sc.parallelize(list);
- listRDD.flatMap(line -> Arrays.asList(line.split(",")).iterator())
- .mapToPair(word -> new Tuple2<>(word,1))
- .aggregateByKey(0,(x,y)-> x+y,(m,n) -> m+n)
- .foreach(tuple -> System.out.println(tuple._1+"->"+tuple._2));
- }
(3)使用scala编写
- def aggregateByKey(): Unit ={
- val list = List("you,jump", "i,jump")
- sc.parallelize(list)
- .flatMap(_.split(","))
- .map((_, 1))
- .aggregateByKey(0)(_+_,_+_)
- .foreach(tuple =>println(tuple._1+"->"+tuple._2))
- }
(4)运行结果
Spark学习之路 (六)Spark Transformation和Action的更多相关文章
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
- Spark学习笔记2(spark所需环境配置
Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...
- Spark学习之路(十六)—— Spark Streaming 整合 Kafka
一.版本说明 Spark针对Kafka的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8和spark-streaming-kafka-0-10,其主要区别如下: s ...
- Spark学习之路 (八)SparkCore的调优之开发调优
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark ...
- Spark学习之路 (七)Spark 运行流程
一.Spark中的基本概念 (1)Application:表示你的应用程序 (2)Driver:表示main()函数,创建SparkContext.由SparkContext负责与ClusterMan ...
- Spark学习之路 (三)Spark之RDD
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...
- Spark学习之路 (二)Spark2.3 HA集群的分布式安装
一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...
- Spark学习之路 (二十二)SparkStreaming的官方文档
官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streamin ...
- Spark学习之路(十四)—— Spark Streaming 基本操作
一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apac ...
- Spark学习之路 (八)SparkCore的调优之开发调优[转]
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...
随机推荐
- Linux snprintf使用总结
snprintf()函数用于将格式化的数据写入字符串,其原型为: int snprintf(char *str, int n, char * format [, argument, ...]); ...
- 牛客网Wannafly挑战赛25A 因子 数论
正解:小学数学数论 解题报告: 传送门 大概会连着写几道相对而言比较简单的数学题,,,之后就会比较难了QAQ 所以这题相对而言还是比较水的,,, 首先这种题目不难想到分解质因数趴,, 于是就先对p和n ...
- scss是什么?在vue.cli中的安装使用步骤是?有哪几大特性?
css的预编译: 使用步骤: 第一步:用npm下三个loader(sass-loader.css-loader.node-sass): 第二步:在build目录找到webpack.base.confi ...
- 基于sendEmail的简单zabbix邮件报警
一.sendmail和sendEmail区别 sendmail是一款邮件服务器软件(MTA),sendEmail是命令行SMTP邮件客户端(MUA) 二.senEmail安装 下载地址:http:// ...
- 8.0-uC/OS-III临界段
1.临界段 (临界段代码,也叫临界区,是指那些必须完整连续运行,不可被打断的代码段) 锁调度器,可以执行ISR,开启调度器不可执行ISR: (1).临界段代码,也称作临界域,是一段不可分割的代码. u ...
- Linux中安装python3
[centos7中安装python3]http://blog.csdn.net/wjqwinn/article/details/75633714 (一)安装python3前的准备工作1.修改文件中第一 ...
- 20170803 Airflow自带的API进行GET 和POST动作部分内容
--1 首先你要有安装好的Airflow 环境并且在配置文件中有启用API 属性 --2 就是GET 和POST 方法的调用了 这里说一下,由于Airflow在网络上的资料比较少,可以从GETHUB中 ...
- 5 jmeter性能测试小小的实战
项目描述 被测网址:www.sogou.com指标:相应时间以及错误率场景:线程数 20.Ramp-Up Period(in seconds) 10.循环次数 10 测试步骤 1.打开jmeter工具 ...
- SparkSql常用语句
-连接sparksql: cd /home/mr/spark/bin ./beeline !connect jdbc:hive2://hostname:port --切换数据库 use databas ...
- [LeetCode] 130. Surrounded Regions_Medium tag: DFS/BFS
Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...