传送门

首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误)

对以下内容不理解的,强势推荐flash的博客

我们除了原来记录最长上升子序列的\(f_{i,j}\),再记\(g_{i,j}\)表示到\(i,j\)时的最长上升子序列个数,同时设两个字符串为\(A,B\)

若\(A_i=B_j\) ,则有\(f_{i,j}=f_{i-1,j-1}+1,g_{i,j}=g_{i-1,j-1}\)

否则\(f_{i,j}=max(f_{i-1,j},f_{i,j-1}),g_{i,j}\)的话看能否从\(f_{i-1,j}\)或\(f_{i,j-1}\)转移,如果可以就加上对应的\(g\)

注意,如果\(f_{i,j}=f_{i-1,j-1}\)(等价于\(f_{i,j}=f_{i-1,j}=f_{i,j-1}\)),那么\(g_{i-1,j-1}=g_{i-1,j}=g_{i,j-1}=\frac{1}{2}g_{i,j}\),所以要减去\(g_{i-1,j-1}\)

至于为什么,yyb都没写,我也不好说.,反正要么感性理解(雾),要么打表手玩.还不理解就戳flash吧qwq

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b)) using namespace std;
const int N=5000+10,mod=100000000;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int f[2][N],g[2][N],n,m;
char cc[N],ss[N]; int main()
{
scanf("%s%s",cc+1,ss+1);
n=strlen(cc+1)-1,m=strlen(ss+1)-1;
g[0][0]=g[1][0]=1;
for(int j=1;j<=m;j++) g[0][j]=1;
int nw=1,la=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
f[nw][j]=g[nw][j]=0;
if(cc[i]==ss[j]) f[nw][j]=f[la][j-1]+1,g[nw][j]=g[la][j-1];
else f[nw][j]=max(f[nw][j-1],f[la][j]);
if(f[nw][j]==f[la][j]) g[nw][j]+=g[la][j];
if(f[nw][j]==f[nw][j-1]) g[nw][j]+=g[nw][j-1];
if(f[nw][j]==f[la][j-1]) g[nw][j]-=g[la][j-1];
g[nw][j]%=mod;
}
swap(nw,la);
}
printf("%d\n%d\n",f[la][m],g[la][m]);
return 0;
}

luogu P2516 [HAOI2010]最长公共子序列的更多相关文章

  1. Luogu P2516 [HAOI2010]最长公共子序列 DP

    首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...

  2. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  3. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  4. 洛谷 P2516 [HAOI2010]最长公共子序列

    题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...

  5. P2516 [HAOI2010]最长公共子序列 题解(LCS)

    题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...

  6. 洛谷P2516 [HAOI2010]最长公共子序列

    题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...

  7. P2516 [HAOI2010]最长公共子序列

    传送门 看到数据范围,显然 $n^2$ 的 $dp$... 设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数 但是好像没法判断转移来的是 ...

  8. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

  9. 【BZOJ2423】[HAOI2010]最长公共子序列 DP

    [BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

随机推荐

  1. jquery Ajax noConflict()

    如果幾個框架都在使用$作為標識符,那麼這個時候可以使用noConflict()處理衝突. 可以直接使用jquery代替簡寫,也可以定義變量,也可以將$賦值給ready函數,函數內部可以使用快捷方式,不 ...

  2. Django-website 程序案例系列-9 分页

    分页例子程序: LIST = [] #全局列表 for i in range(103): #1:100的列表 LIST.append(i) def user_list(request): curren ...

  3. BZOJ1782[USACO 2010 Feb Gold 3.Slowing down]——dfs+treap

    题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...

  4. BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)

    求出凸包,显然四个点在凸包上.考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的.过程类似旋转卡壳. #include<iostream> #include<c ...

  5. Dapper 连表查询

    实体类: UserInfo: public partial class UserInfo { public UserInfo() { this.Persion = new HashSet<Per ...

  6. 棋盘问题 POJ - 1321

    题意: 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放 ...

  7. 05 Zabbix triggers--action--event

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 05 Zabbix triggers--action--event 动作action: 在配置好监 ...

  8. 自学Linux Shell11.2-echo命令

    点击返回 自学Linux命令行与Shell脚本之路 11.2-echo命令 echo命令的功能是在显示器上显示一段文字,一般起到一个提示的作用. 语 法:echo [-n][字符串]或 echo [- ...

  9. HTML5小游戏-简单抽奖小游戏

    换了新工作以后,专注前端开发,平常空闲时间也比较多,可以多钻研一下技术,写一下博客.最近在学习canvas,参考网上的slotmachine插件,用canvas实现了一个简单抽奖小游戏.       ...

  10. R语言:随机抽样(sample函数)

    如果想从一堆数据集中随机抽出一个数,用sample函数就能实现,代码展示如下: forehead<-c(249,189,128,111,184,233,313,120,151,196,135,1 ...