转自:https://iwringer.wordpress.com/2012/05/18/how-to-scale-complex-event-processing-cep-systems/

What is CEP?

Complex event processing (CEP) systems query events on the fly without storing them.

  • For an introduction and definition of CEP, please refer to CEP Blogand Wikipedia.) .
  • If you need a real comprehensive coverage of CEP, read the paper “Processing flows of information: from Data stream to Complex Event Processing” [1]. (or the slide deck).

In CEP, we think in terms of event streams. Event stream is a logical sequence of events that become available over time. For example, stock event steam consists of events that notify changes to stock price. Users provide queries to the CEP engine, which implements the CEP logic, and the CEP engine matches those queries against events coming through event streams.

CEP differs from other paradigms like event processing, filtering etc., by its support for temporal queries that reason in terms of temporal concepts like “time windows” and “before and after relationships” etc. For example, a typical CEP query will say that

“If IBM stock value increased by more than 10% within an hour, please notify me”.

Such a CEP query has few defining characteristics.

  1. CEP queries generally keep running, and keep emitting events when events match the condition given in the query.
  2. CEP query operates on the fly and stores only minimal amount of events into a storage.
  3. CEP Engines responds to conditions generally within milliseconds range.

What is Scaling CEP?

There are many CEP Engine implementations (see CEP Players list 2012). However, mostly CEP engines run in a large box, scaling up horizontally. Vertically scaling CEP engines is still an open problem. Reminder of this post discusses what vertically scaling CEP engine means and some of the potential answers.

We use the term Scaling to describe the ability for a CEP system to hande larger or complex queries by adding more resources. Scaling CEP has several dimensions.

  1. Handling Large number of queries
  2. Queries that needs large working memory
  3. Handling a complex query that might not fit within a single machine
  4. Handling large number of events

How to Scale CEP?

Let us consider each dimension separately.

Handling Large Number of Queries

This is the easiest of the four since we can use the shared nothing architecture. Here we can run multiple CEP Engine instances (each instance runs in a single host) each running a subset of queries.

  1. Trivial implementation will send all events (streams) to all the CEP engines
  2. More optimized implementations can use a Publish/subscribe message broker network (like Narada Broker). Here each CEP engine should analyze the deployed queries and subscribe to required event streams in the broker network. Generally, we match each event stream to a topic in the publish/subscribe system.
  3. Third option is to delegate the event distribution to a Stream Processing system (e.g. Apache S4 or Strom). For instance, links [4] and [5] describe such a scenario to run Esper within Strom.

Queries that need large working memory

For instance, a long running complex query that needs to maintain a large window and all events in the window would need a large working memory. Potential answer to this problem is to use a distributed cache to store the working memory. Reference [6] describes such a scenario.

Handling large number of events handling a complex query that might not fit within a single machine

We will handle the both scenarios together as both are two sides of the same coin. In both cases, we have trouble fitting a single query into a single host such that it can support the given event rate.
To handle such scenarios, we have to distribute the query across many computers.

We can do this by breaking the query into several steps in a pipeline that matches events against some conditions and republish the matching events to steps further in the pipeline. Then we can deploy different steps of the pipeline into different machines.

For example, lets consider the following query. This query matches if there are two events within 30 seconds from IBM stocks that having price greater than 70 and having prize increase more than 10%.

  1. select a1.symbol, a1.prize, a2.prize from every
  2. a1=StockStream[price > 70 symbol =’IBM’] ->
  3. a2=StockStream[price > 70 symbol =’IBM’]
  4. [a1.price < 1.1*a2.prize][within.time=30]

As shown by the figure, we can break the query into three nodes, and each node will have to republish the matching events to the next node. (Option 1)

CEP Query as a Pipeline

However, queries often have other properties that allow further optimization. For example, although the last step of matching prize increase is stateful other two steps are stateless. Stateful operations remember information after processing an event so that earlier events affect the processing of later events while stateless operations only depends on the event being processed.

Therefore, we can add multiple instances in the place of those statless instances using a shared-nothing architecture. For example, we can break the query into five nodes as shown by the bottom part of the picture (Option 2).

Also another favorable fact is that CEP processing generally happens through filtering where amount of events reduce as we progress through the pipeline. Therefore, pushing stateless filter like operations (e.g. matching against symbol =”IBM”) to the first parts of the pipeline and scaling them in shared nothing manner should allow us to scale up the system for much higher event rates. For example, lets say that the StockQuote event stream generates 100,000 events per seconds, but only 5% of them are about IBM. Therefore, only 5000 events will make it past the first filter, which we can handle much easier than 100k events.

However, it is worth noting that above method only works with some queries. For example, if we have a query that has a single stateful operation like window-based pattern, we cannot use this method.
Unfortunately, there is no framework that can do this out of the box (let me know if I am wrong). So if you want to do this, you will have to code it. If you choose to do that, using a pub/sub network or stream processing system might reduce most of the complexities.

Please shared your thoughts!

Note: Above ideas are now supported on top of WSO2 Stream Processor with two nodes for smaller use cases that require HA and with Kafka for larger use cases.

  1. Alessandro Margara and Gianpaolo Cugola. 2011. Processing flows of information: from data stream to complex event processing. InProceedings of the 5th ACM international conference on Distributed event-based system(DEBS ’11).
  2. http://www.thetibcoblog.com/2009/08/21/cep-versus-esp-an-essay-or-maybe-a-rant/
  3. http://www.slideshare.net/TimBassCEP/mythbusters-event-stream-processing-v-complex-event-processing-presentation
  4. Run Esper with Storm –http://stackoverflow.com/questions/9164785/how-to-scale-out-with-esper
  5. http://tomdzk.wordpress.com/2011/09/28/storm-esper/
  6. Distributed Cache to scale CEP –http://magmasystems.blogspot.com/2008/02/cep-engines-and-object-caches.html
 
 
 
 

How to scale Complex Event Processing (CEP)/ Streaming SQL Systems?的更多相关文章

  1. Understanding Complex Event Processing (CEP)/ Streaming SQL Operators with WSO2 CEP (Siddhi)

    转自:https://iwringer.wordpress.com/2013/08/07/understanding-complex-event-processing-cep-operators-wi ...

  2. An Overview of Complex Event Processing

    An Overview of Complex Event Processing 复杂事件处理技术概览(一) 翻译前言:我在理解复杂事件处理(CEP)方面一直有这样的困惑--为什么这种计算模式是有效的, ...

  3. FlinkCEP - Complex event processing for Flink

    https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/libs/cep.html 首先目的是匹配pattern sequenc ...

  4. An Overview of Complex Event Processing2

    An Overview of Complex Event Processing 翻译前言:感觉作者有点夸夸其谈兼絮絮叨叨,但文章还是很有用的.原文<An Overview of Complex ...

  5. Stream Processing 101: From SQL to Streaming SQL in 10 Minutes

    转自:https://wso2.com/library/articles/2018/02/stream-processing-101-from-sql-to-streaming-sql-in-ten- ...

  6. Flafka: Apache Flume Meets Apache Kafka for Event Processing

    The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...

  7. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  8. OpenGL的GLUT事件处理(Event Processing)窗口管理(Window Management)函数[转]

    GLUT事件处理(Event Processing)窗口管理(Window Management)函数 void glutMainLoop(void) 让glut程序进入事件循环.在一个glut程序中 ...

  9. KSQL: Streaming SQL for Apache Kafka

    Few weeks back, while I was enjoying my holidays in the south of Italy, I started receiving notifica ...

随机推荐

  1. 《Python》网络编程之验证客户端连接的合法性、socketserver模块

    一.socket的更多方法介绍 # 服务端套接字函数 s.bind() # 绑定(主机,端口号)到套接字 s.listen() # 开始TCP监听 s.accept() # 被动接受TCP客户的连接, ...

  2. php +apache +mysql 配置笔记

    2013年11月5日 14:27:46 php +apache +mysql 配置笔记 mysql 正常安装 忽略. 1,配置笔记:安装apache 的成功标志是:安装完成之后,在浏览器输入http: ...

  3. background 的一些 小的细节: 1, 背景色覆盖范围: border+ width+ padding ;背景图覆盖范围: width + padding ; 2设置多个背景图片 ; 3) background-position定位百分比的计算方式: 4)background-clip 和 background-origin 的区别

    1. background (background-color, background-image)  背景色覆盖范围: border+ width+ padding ;背景图覆盖范围: width ...

  4. kbmMW 5.08.01压力测试报告

    上图为客户端测试结果,运行14小时,无异常报告.基于洞主封装的HttpsysTransport,基于ClientQuery完成25万多次数据库访问操作,含查询并对查询结果进行修改及增加新记录,然后提交 ...

  5. python day 06 作业

  6. ES6 箭头函数--特性

    如果箭头表达式仅仅就是简化了函数的命名,我们为什么要改变原来的习惯而去使用它呢?所以我们需要了解一下箭头函数的特性. 箭头函数内部没有constructor方法,也没有prototype,所以不支持n ...

  7. ubuntu: firefox+flashplay

    更新两步: 1.安装firefox:rm-->下载-->mv-->ln http://www.cnblogs.com/yzsatcnblogs/p/4266985.html 2. f ...

  8. php面向对象之trait

    trait的使用技巧trait是php5.4以后新增加的一个功能,可以将多个类中,共用的一些属性和方法提取出来做来公共trait类,就像是装配汽车的配件,如果你的类中要用到这些配件,就直接用use导入 ...

  9. css完成下图

    <div></div> div{ height: 48px; width: 80px; padding: 0 16px 0 32px; background: rgba(0,0 ...

  10. //生成四位数的验证码--->