BZOJ 1500/Luogu 2042 - 维修数列 - [NOI2005][Splay]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1500
题目链接:https://www.luogu.org/problemnew/show/P2042
Description
请写一个程序,要求维护一个数列,支持以下 6 种操作: 请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格
Input
输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目。
第2行包含N个数字,描述初始时的数列。
以下M行,每行一条命令,格式参见问题描述中的表格。
任何时刻数列中最多含有500 000个数,数列中任何一个数字均在[-1 000, 1 000]内。
插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes。
Output
对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果,每个答案(数字)占一行。
Sample Input
9 8
2 -6 3 5 1 -5 -3 6 3
GET-SUM 5 4
MAX-SUM
INSERT 8 3 -5 7 2
DELETE 12 1
MAKE-SAME 3 3 2
REVERSE 3 6
GET-SUM 5 4
MAX-SUM
Sample Output
-1
10
1
10
HINT
题解:
Splay模板题。
其中,关于如何搞定求区间最大连续子列和的问题,可以参考线段树的做法:UVALive 3938 - "Ray, Pass me the dishes!" - [最大连续子列和+线段树](通过分治+最大前缀和+最大后缀和共同维护得到最大连续子列和)(感慨一下,已经想不起是哪个时候做的这道题了,时光飞逝啊……)。
关于区间翻转,则是Splay老生常谈的事情了,一个 $rev$ 标记搞定。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=5e5+; int n,m;
int a[maxn]; /******************************** splay - st ********************************/
#define Key_value ch[ch[root][1]][0]
int root,nodecnt;
int par[maxn],ch[maxn][];
int key[maxn],sum[maxn],siz[maxn];
int mxpre[maxn],mxsuf[maxn],mxsub[maxn]; //最大前缀和,最大后缀和,最大连续子列和
bool alt[maxn],rev[maxn]; //修改标记,反转标记
int pool[maxn],poolsize; //节点回收
void NewNode(int &x,int p,int k)
{
if(poolsize>) x=pool[--poolsize];
else x=++nodecnt;
par[x]=p;
ch[x][]=ch[x][]=;
key[x]=sum[x]=k;
mxpre[x]=mxsuf[x]=mxsub[x]=k;
siz[x]=;
alt[x]=rev[x]=;
}
void Update_Rev(int x)
{
if(x==) return;
swap(ch[x][],ch[x][]);
swap(mxpre[x],mxsuf[x]);
rev[x]^=;
}
void Update_Alt(int x,int val)
{
if(x==) return;
key[x]=val;
sum[x]=siz[x]*val;
mxpre[x]=mxsuf[x]=mxsub[x]=max(val,val*siz[x]);
alt[x]=;
}
void Pushup(int x)
{
int ls=ch[x][],rs=ch[x][];
siz[x]=siz[ls]+siz[rs]+;
sum[x]=sum[ls]+sum[rs]+key[x];
mxpre[x]=max(mxpre[ls],sum[ls]+key[x]+max(,mxpre[rs]));
mxsuf[x]=max(mxsuf[rs],max(,mxsuf[ls])+key[x]+sum[rs]);
mxsub[x]=max(max(mxsub[ls],mxsub[rs]),max(,mxsuf[ls])+key[x]+max(,mxpre[rs]));
}
void Pushdown(int x)
{
if(rev[x])
{
Update_Rev(ch[x][]);
Update_Rev(ch[x][]);
rev[x]=;
}
if(alt[x])
{
Update_Alt(ch[x][],key[x]);
Update_Alt(ch[x][],key[x]);
alt[x]=;
}
}
void Rotate(int x,int type) //旋转,0为左旋zag,1为右旋zig
{
int y=par[x];
ch[y][!type]=ch[x][type]; par[ch[x][type]]=y;
if(par[y]) ch[par[y]][(ch[par[y]][]==y)]=x;
par[x]=par[y];
ch[x][type]=y; par[y]=x;
Pushup(y); Pushup(x);
}
void Splay(int x,int goal)
{
while(par[x]!=goal)
{
if(par[par[x]]==goal) Rotate(x,ch[par[x]][]==x); //左孩子zig,右孩子zag
else
{
int y=par[x];
int type=(ch[par[y]][]==y); //type=0,y是右孩子;type=1,y是左孩子
if(ch[y][type]==x)
{
Rotate(x,!type);
Rotate(x,type);
}
else
{
Rotate(y,type);
Rotate(x,type);
}
}
}
if(goal==) root=x;
}
int Get_Kth(int x,int k) //得到第k个节点
{
Pushdown(x);
int t=siz[ch[x][]]+;
if(t==k) return x;
if(t>k) return Get_Kth(ch[x][],k);
else return Get_Kth(ch[x][],k-t);
}
void Build(int &x,int l,int r,int par) //建树,先建立中间结点,再建两端的方法
{
if(l>r) return;
int mid=(l+r)/;
NewNode(x,par,a[mid]);
Build(ch[x][],l,mid-,x);
Build(ch[x][],mid+,r,x);
Pushup(x);
}
void Init() //初始化,前后各加一个空节点
{
root=nodecnt=poolsize=;
par[]=ch[][]=ch[][]=;
key[]=sum[]=siz[]=;
alt[]=rev[]=;
mxpre[]=mxsuf[]=mxsub[]=-INF;
NewNode(root,,-INF); //头部加入一个空位
NewNode(ch[root][],root,-INF); //尾部加入一个空位
Build(Key_value,,n,ch[root][]);
Pushup(ch[root][]);
Pushup(root);
} void Insert(int p,int tot)
{
for(int i=;i<=tot;i++) scanf("%d",&a[i]);
Splay(Get_Kth(root,p++),); //p伸展到根
Splay(Get_Kth(root,p++),root); //p的后继p+1伸展到根的右孩子
Build(Key_value,,tot,ch[root][]);
Pushup(ch[root][]);
Pushup(root);
} void Collect(int x) //回收节点x统领的子树
{
if(x==) return;
pool[poolsize++]=x;
Collect(ch[x][]);
Collect(ch[x][]);
}
void Delete(int p,int tot)
{
Splay(Get_Kth(root,p-+),); //伸展到根
Splay(Get_Kth(root,p+tot+),root); //伸展到根的右孩子
Collect(Key_value);
par[Key_value]=;
Key_value=;
Pushup(ch[root][]);
Pushup(root);
} void Alter(int p,int tot,int c) //修改[p,p+tot)为k
{
Splay(Get_Kth(root,p-+),); //伸展到根
Splay(Get_Kth(root,p+tot+),root); //伸展到根的右孩子
Update_Alt(Key_value,c);
Pushup(ch[root][]);
Pushup(root);
} void Reverse(int p,int tot) //反转[p,p+tot)区间
{
Splay(Get_Kth(root,p-+),);
Splay(Get_Kth(root,p+tot+),root);
Update_Rev(Key_value);
Pushup(ch[root][]);
Pushup(root);
} int Get_Sum(int p,int tot)
{
Splay(Get_Kth(root,p-+),);
Splay(Get_Kth(root,p+tot+),root);
return sum[Key_value];
} int Get_MaxSub(int p,int tot)
{
Splay(Get_Kth(root,p-+),);
Splay(Get_Kth(root,p+tot+),root);
return mxsub[Key_value];
}
/******************************** splay - ed ********************************/ int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
Init(); char op[];
int pos,tot,c;
while(m--)
{
scanf("%s",op);
switch(op[]&op[]|op[])
{
case ('I'&'N'|'S'):
scanf("%d%d",&pos,&tot);
Insert(pos,tot);
break;
case ('D'&'E'|'L'):
scanf("%d%d",&pos,&tot);
Delete(pos,tot);
break;
case ('M'&'A'|'K'):
scanf("%d%d%d",&pos,&tot,&c);
Alter(pos,tot,c);
break;
case ('R'&'E'|'V'):
scanf("%d%d",&pos,&tot);
Reverse(pos,tot);
break;
case ('G'&'E'|'T'):
scanf("%d%d",&pos,&tot);
printf("%d\n",Get_Sum(pos,tot));
break;
case ('M'&'A'|'X'):
printf("%d\n",Get_MaxSub(,siz[root]-));
break;
}
}
}
BZOJ 1500/Luogu 2042 - 维修数列 - [NOI2005][Splay]的更多相关文章
- [bzoj1500 维修数列](NOI2005) (splay)
真的是太弱了TAT...光是把代码码出来就花了3h..还调了快1h才弄完T_T 号称考你会不会splay(当然通过条件是1h内AC..吓傻)... 黄学长的题解:http://hzwer.com/28 ...
- bzoj 1500 [NOI 2005] 维修数列
题目大意不多说了 貌似每个苦逼的acmer都要做一下这个splay树的模版题目吧 还是有很多操作的,估计够以后当模版了.... #include <cstdio> #include < ...
- 【BZOJ1500】【NOI2005】维修数列(Splay)
[BZOJ1500][NOI2005]维修数列(Splay) 题面 不想再看见这种毒瘤题,自己去BZOJ看 题解 Splay良心模板题 真的很简单 我一言不发 #include<iostream ...
- BZOJ 1500 Luogu P2042 [NOI2005] 维护数列 (Splay)
手动博客搬家: 本文发表于20180825 00:34:49, 原地址https://blog.csdn.net/suncongbo/article/details/82027387 题目链接: (l ...
- 【BZOJ】1500: [NOI2005]维修数列(splay+变态题)
http://www.lydsy.com/JudgeOnline/problem.php?id=1500 模板不打熟你确定考场上调试得出来? 首先有非常多的坑点...我遇到的第一个就是,如何pushu ...
- BZOJ 1500 维修数列【Splay】
注意:1,内存限制,所以需要回收删除的点 2,当前节点的左连续区间和最大值=max(左子树的左连续区间和最大值,左子树的总和+当节点的值+max(右子树的左连续区间和最大值,0)):右连续区间和最大值 ...
- NOI2005维修数列(splay)
题目描述: Description 请写一个程序,要求维护一个数列,支持以下 6 种操作: 请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格 Input 输入的第1 行包含两个数N 和M( ...
- 洛谷 2042 BZOJ 1500 NOI 2005 维护数列
[题意概述] 维护一个数列,要求支持以下6种操作: [题解] 大Boss...可以用Treap解决 需要用到垃圾回收.线性建树. #include<cstdio> #include< ...
- 【BZOJ1500】维修数列(splay)
题意: 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一条命令,格式参见问题描述中的 ...
随机推荐
- Swift 计算三角形角度、两条边夹角
/// 计算三点之间的角度 /// /// - Parameters: /// - p1: 点1 /// - p2: 点2(也是角度所在点) /// - p3: 点3 /// - Returns: 角 ...
- 你真的了解Python吗 ---Python的内存管理
请看下面的一段代码: origin = {'a':100,'b':[1,2,34,5]} obj_copy ={}; print origin; obj_copy['key1']= origin; o ...
- 新手如何学习 jQuery?
可以看张晓菲的<锋利的jQuery>,重点是自己理解函数用法并自行实现一些常用的效果.如果需要快速查阅可以用这个api,每个函数都附有简单的示例:http://api.jquery.com ...
- 11g新特性-SQL Plan Management
在11g之前版本,提供了stored outlines(sql概要)特性来保存sql的执行计划. 在11g中,引入了一个新的特性sql计划管理(sql plan management)特性来保存sql ...
- ubuntu安装odbc及(mysql驱动)
一.安装odbc apt-get install unixodbc 如果需要用到编译的头文件之类的 apt-get install unixodbc-dev 二.安装mysql驱动 apt-get i ...
- python + django + dwebsocket 实现简单的聊天室
使用库dwebsocket,具体参考此处 views.py: from dwebsocket.decorators import accept_websocket,require_websocket ...
- Socket网络编程--网络爬虫(3)
上一小节我们实现了从博客园的首页获取一些用户的用户名,并保存起来.接下来的这一小节我将对每个用户名构建一个用户的博客主页,然后从这个主页获取所有能获取到的网页,网页的格式现在是http://www.c ...
- lua -- 所有UI组件的基类
-- 组件行为基础 local Behavior = class("Behavior"); function Behavior:ctor(name) self.owner = ni ...
- idea git 使用
第一部 测试 本地git 是否已经成功安装 centos 7 发行版默认已经安装 第二部: 测试 github 连接是否成功,需要输入用户密码 第三部:创建git项目管理两种方式 1. 菜单 VC ...
- Sword STL迭代器prev,next相关函数
迭代器的头文件中定义了4个实现迭代器模板的函数模板. .advance(iterator,num):将迭代器iterator 移动了num个位置 .distance(iterator1,iterato ...